Objective To improve selective degradation ability of catalyst (TiO2)under visible light.
Method Salicylic acid molecularly imprinted and N-doped TiO2 powders were synthesized by an improved molecularly imprinted sol-gel technique using urea as a nitrogen (N) source and salicylic acid as a template molecule. The samples were characterized by XRD, TEM, UV-Vis diffuse reflectance spectrophotometer and N2 adsorption-desorption.
Result All samples were anatase.The red-shift of absorption band was caused by doping nitrogen to TiO2. The better-developed pore structure and pass were due to molecular imprinting technique, and the enlarged specific surface area was generated by N-doping and molecularly imprinting. Compared to benzoic acid and methyl orange, TiO2 selective photodegradation rate of salicylic acid (96.0%) was higher under visible light using molecularly imprinting and N-doping.
Conclusion The selectivity and visible-light photoactivity of TiO2 can be effectively improved using salicylic acid molecularly imprinting and N-doping.