Citation: | XU Mingfeng, KE Xiandong, ZHANG Yi, WANG Yongqiang, SU Zhiyao. Wood densities of six hardwood tree species in Eastern Guangdong and Influencing factors[J]. Journal of South China Agricultural University, 2016, 37(3): 100-106. DOI: 10.7671/j.issn.1001-411X.2016.03.016 |
This study aims to provide the theoretical and data supports for the breeding of wood density and carbon sink accounting by analyzing the effects of different impact factors on wood density.
Six tree species were selected through the analysis of communities in sample plots of Kanghe nature reserve, and their wood densities were measured. This study analyzed the effects of different species, different diameter grades and different slope aspects on wood density, and the correlation between tree traits and wood density using a variety of statistical softwares.
There were significant differences in wood density among different tree species. The highest averages of green densities (1.10 g·cm-3), basic densities (0.53 g·cm-3) and the moisture contents (122.84%) were found in Castanopsis carlesii, C. hystrix and C. carlesii respectively. There was no significant difference in wood density among different diameter grades for all species except C. fargesii. There was no significant difference in wood density among different slope aspects for all species. The nonparametric Spearman's rank correlation analysis showed that both diameter at breast height and tree height were significantly correlated with green density but not with basic density.
C. hystrix produces high quality wood with low moisture content and high basic density. Wood density has a tendency to rise with the increase of diameter grade, but has no regular change with the change of slope aspect. The relationship between diameter at breast height, tree height and green density, and the relationship between diameter at breast height, tree height and basic density are different probably because green density is affected by the moisture content.
[1] |
BERGMAN R, CAI Z, CARLL C G. Wood handbook: Wood as an engineering material[M]. Madison: United States Department of Agriculture, Forest Service, Forest Products Laboratory, 2010: 1-2.
|
[2] |
WU R. Microstructural study of sanded and polished wood by replication[J]. Wood Sci Technol, 1998, 32(4): 247-260. doi: 10.1007/BF00702893
|
[3] |
GJERDRUM P, EIKENES B. A model for spatial wood density gradients in Norway spruce stems and stochastic between-stem dissimilarities for basic and dry density[J]. Wood Sci Technol, 2014, 48(1): 71-84. doi: 10.1007/s00226-013-0586-z
|
[4] |
MACHADO J S, LOUZADA J L, SANTOS A J A, et al. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.)[J]. Mater Design, 2014, 56: 975-980. doi: 10.1016/j.matdes.2013.12.016
|
[5] |
MOLTEBERG D, HOIBO O. Modelling of wood density and fibre dimensions in mature Norway spruce[J]. Can J Forest Res, 2007, 37(8): 1373-1389. doi: 10.1139/X06-296
|
[6] |
POORTER L, WRIGHT S J, PAZ H, et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests[J]. Ecology, 2008, 89(7): 1908-1920. doi: 10.1890/07-0207.1
|
[7] |
罗云建. 华北落叶松人工林生物量碳计量参数研究[D]. 北京: 中国林业科学研究院, 2007: 52-53. http://cdmd.cnki.com.cn/Article/CDMD-82201-2007173541.htm
|
[8] |
中国林业科学研究院木材工业研究所.中国主要树种的木材物理力学性质[M].北京:中国林业出版社, 1982.
|
[9] |
侯振宏. 中国林业活动碳源汇及其潜力研究[D]. 北京: 中国林业科学研究院, 2010: 78-79. http://cdmd.cnki.com.cn/Article/CDMD-82201-2010264599.htm
|
[10] |
朱江玲, 石岳, 方乐祺, 等.中国主要树种木材物理力学属性的地理格局及其环境控制[J].中国科学(生命科学), 2015, 45(1): 56-67. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JCXK201501006&dbname=CJFD&dbcode=CJFQ
|
[11] |
徐金梅, 吕建雄, 鲍甫成, 等.祁连山青海云杉木材密度对气候变化的响应[J].北京林业大学学报, 2011, 33(5): 115-121. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201105021
|
[12] |
刘福涛. 立地对马占相思人工林生长和材性的影响[D]. 福州: 福建农林大学, 2007: 25-29. http://cdmd.cnki.com.cn/article/cdmd-10389-2007135795.htm
|
[13] |
PATINO S, LLOYD J, PAIVA R, et al. Branch xylem density variations across the Amazon Basin[J]. Biogeosciences, 2009, 6(4): 545-568. doi: 10.5194/bg-6-545-2009
|
[14] |
WIEMANN M C, WILLIAMSON G B. Geographic variation in wood specific gravity: Effects of latitude, temperature, and precipitation[J]. Wood Fiber Sci, 2002, 34(1): 96-107. http://cn.bing.com/academic/profile?id=521c8238fc0c20590a2546f032524c68&encoded=0&v=paper_preview&mkt=zh-cn
|
[15] |
鲍甫成, 江泽慧.中国主要人工林树种木材性质[M].北京:中国林业出版社, 1998.
|
[16] |
成俊卿.木材学[M].北京:中国林业出版社, 1985.
|
[17] |
徐明锋, 胡砚秋, 李文斌, 等.土壤养分对亚热带天然林物种分布的影响[J].中南林业科技大学学报, 2014, 34(9): 91-97. doi: 10.3969/j.issn.1673-923X.2014.09.018
|
[18] |
潘秋荣, 梁佰华, 陈小芸.广东东源康禾省级自然保护区野生药用植物资源调查[J].广东林业科技, 2012, 28(4): 25-30. doi: 10.3969/j.issn.1006-4427.2012.04.006
|
[19] |
林中大.广东康禾自然保护区植物区系研究[J].广西林业科学, 2007, 36(2): 75-77. doi: 10.3969/j.issn.1006-1126.2007.02.003
|
[20] |
胡传双, 苏志尧, 云虹, 等.流体静力称衡法测定生长锥取样木材密度的改进方法[J].华南农业大学学报, 2010, 31(3): 105-108. doi: 10.3969/j.issn.1001-411X.2010.03.026
|
[21] |
蒋燚, 李志辉, 朱积余, 等.红锥家系木材密度等物理性状的遗传及变异性分析[J].中南林业科技大学学报, 2012, 32(11): 9-13. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201211002
|
[22] |
刘青华, 张蕊, 金国庆, 等.马尾松年轮宽度和木材基本密度的种源变异及早期选择[J].林业科学, 2010, 46(5): 49-54. http://d.old.wanfangdata.com.cn/Periodical/lykx201005008
|
[23] |
NGUYEN H, FIRN J, LAMB D, et al. Wood density: A tool to find complementary species for the design of mixed species plantations[J]. Forest Ecol Manag, 2014, 334: 106-113. doi: 10.1016/j.foreco.2014.08.022
|
[24] |
王秀花, 陈柳英, 马丽珍, 等. 7年生木荷生长和木材基本密度地理遗传变异及种源选择[J].林业科学研究, 2011, 24(3): 307-313. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201103005
|