• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
MAO Genlin, XIE Yun, ZHAO Junlong, CHEN Yan, XU Hanhong, LIN Fei. Stability analysis of internal reference gene of Ricinus communis treated by glucose-fipronil[J]. Journal of South China Agricultural University, 2016, 37(1): 52-57. DOI: 10.7671/j.issn.1001-411X.2016.01.009
Citation: MAO Genlin, XIE Yun, ZHAO Junlong, CHEN Yan, XU Hanhong, LIN Fei. Stability analysis of internal reference gene of Ricinus communis treated by glucose-fipronil[J]. Journal of South China Agricultural University, 2016, 37(1): 52-57. DOI: 10.7671/j.issn.1001-411X.2016.01.009

Stability analysis of internal reference gene of Ricinus communis treated by glucose-fipronil

More Information
  • Received Date: April 01, 2015
  • Available Online: May 17, 2023
  • Objective 

    To screen reliable internal reference genes of castor, Ricinus communis, treated by glucose-fipronil (GTF) and the solvent dimethyl sulfoxide (DMSO), and to provide a basis for studying the uptake mechanism of GTF.

    Method 

    Actin, ARC, ef1a, SamDC and TUA6 genes were selected as candidate reference genes. Specific primers for each gene were designed and real-time quantitative PCR was conducted. Five softwares, including geNorm, NormFinder, BestKeeper, Delta CT and RefFinder, were employed to analyze the gene expression stabilities in cotyledon of castor seedlings treated by GTF and DMSO with different concentration and time.

    Result 

    The stabilities were variant according to different softwares. The rank orders of stability were geNorm: Actin=ef1a >SamDC > ARC > TUA6; NormFinder:SamDC > ARC > Actin > ef1a > TUA6; BestKeeper: Actin > ef1a > SamDC > ARC > TUA6; Delta CT: Actin > ef1a > SamDC > ARC > TUA6; RefFinder: Actin > SamDC > ef1a > ARC > TUA6. With a single analysis of DMSO treatment by RefFinder showed that ef1a > SamDC > Actin > TUA6 > ARC.

    Conclusion 

    Actin is the stablest reference gene under GTF and DMSO treatments, while ef1a is the stablest one under DMSO treatment.

  • [1]
    徐汉虹, 张志祥, 程东美, 等.导向农药[J].世界农药, 2004(5): 3-9. doi: 10.3969/j.issn.1009-6485.2004.05.002
    [2]
    DOIDY J, GRACE E, KUHN C, et al. Sugar transporters in plants and in their interactions with fungi[J]. Trends Plant Sci, 2012, 17(7):413-422. doi: 10.1016/j.tplants.2012.03.009
    [3]
    YANG W, WU H, XU H, et al. Synthesis of glucose-fipronil conjugate and its phloem mobility[J]. J Agr Food Chem, 2011, 59(23):12534-12542. doi: 10.1021/jf2031154
    [4]
    WU H, YANG W, ZHANG Z, et al. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism[J]. J Agr Food Chem, 2012, 60(24): 6088-6094. doi: 10.1021/jf300546t
    [5]
    DENIS M, DELROT S. Carrier-mediated uptake of glyphosate in broad bean (Vicia faba) via a phosphate transporter[J]. Physiol Plantarum, 1993, 87(4):569-575. doi: 10.1111/ppl.1993.87.issue-4
    [6]
    FUJITA M, SHINOZAKI K. Identification of polyamine transporters in plants: Paraquat transport provides crucial clues[J]. Plant Cell Physiol, 2014, 55(5): 855-861. doi: 10.1093/pcp/pcu032
    [7]
    CHOLLET J, DELETAGE C, FAUCHER M, et al. Synthesis and structure-activity relationships of some pesticides with an alpha-amino acid function[J]. Biochim Biophys Acta, 1997, 1336(2): 331-341. doi: 10.1016/S0304-4165(97)00041-X
    [8]
    POSTOLLEC F, FALENTIN H, PAVAN S, et al. Recent advances in quantitative PCR (qPCR) applications in food microbiol[J]. Food Microbiol, 2011, 28(5): 848-861. doi: 10.1016/j.fm.2011.02.008
    [9]
    袁伟, 万红建, 杨悦俭.植物实时荧光定量PCR内参基因的特点及选择[J].植物学报, 2012(4): 427-436. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201204009
    [10]
    VANDESOMPELE J, DE PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2002, 3(7): H34. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_126239
    [11]
    TONG Z, GAO Z, WANG F, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J]. BMC Mol Biol, 2009, 10(1): 71. doi: 10.1186/1471-2199-10-71
    [12]
    HUGGETT J, DHEDA K, BUSTIN S, et al. Real-time RT-PCR normalisation, strategies and considerations[J]. Genes Immun, 2005, 6(4): 279-284. doi: 10.1038/sj.gene.6364190
    [13]
    HONG S, SEO P J, YANG M, et al. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant Biol, 2008, 8(1):112. doi: 10.1186/1471-2229-8-112
    [14]
    SUZUKI T, HIGGINS P J, CRAWFORD D R. Control selection for RNA quantitation[J]. Biotechniques, 2000, 29(2): 332-337. doi: 10.2144/00292rv02
    [15]
    BARROS R T, KHAJURIA C, WANG H, et al. Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica virgifera virgifera)[J/OL]. PLoS One, 2014, 9(10): e109825. http://www.plosoneorg.sci-hub.org/article/fetchobject.action?uri=info:doi/10.1371/journal.pone.0109825&representation=PDF.
    [16]
    魏永赞, 赖彪, 胡福初, 等.用于荔枝qPCR分析的内参基因克隆及稳定性分析[J].华南农业大学学报, 2012, 33(3): 301-306. doi: 10.3969/j.issn.1001-411X.2012.03.006
    [17]
    GUTIERREZ L, MAURIAT M, GUENIN S, et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnol J, 2008, 6(6): 609-618. doi: 10.1111/pbi.2008.6.issue-6
    [18]
    ANDERSEN C L, JENSEN J L, ORNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res, 2004, 64(15): 5245-5250. doi: 10.1158/0008-5472.CAN-04-0496
    [19]
    PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper:Excel-based tool using pair-wise correlations[J]. Biotechnol Lett, 2004, 26(6): 509-515. doi: 10.1023/B:BILE.0000019559.84305.47
    [20]
    SILVER N, BEST S, JIANG J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Mol Biol, 2006, 7(1):33. doi: 10.1186/1471-2199-7-33
    [21]
    XIE F, SUN G, STILLER J W, et al. Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database[J/OL]. PLoS One, 2011, 6(11): e26980. http://www.plosone.org.sci-hub.org/article/fetchobject.action?uri=info:doi/10.1371/journal.pone.0026980&representation=PDF.
    [22]
    JAIN M, NIJHAWAN A, TYAGI A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochem Biophys Res Commun, 2006, 345(2): 646-651. doi: 10.1016/j.bbrc.2006.04.140
  • Cited by

    Periodical cited type(25)

    1. 白尚旺,王梦瑶,胡静,陈志泊. 多区域注意力的细粒度图像分类网络. 计算机工程. 2024(01): 271-278 .
    2. 李名博,任东悦,郭俊旺,卫勇. 基于改进YOLOX-S的玉米病害识别. 江苏农业科学. 2024(03): 237-246 .
    3. 李显娜,吴强,张一丹,周康. 自监督学习下小样本番茄叶片病害检测. 中国农机化学报. 2024(07): 172-179 .
    4. 韩鹏飞,宋其江,贾梦实. 基于改进轻量化EfficientNet-V2模型的小麦种子分类. 中国农机化学报. 2024(09): 111-117 .
    5. 黄志龙. 基于改进YOLOv5s的番茄叶片病虫害识别方法. 电大理工. 2024(03): 1-7+17 .
    6. 高泉,刘笠溶,张洁,高颜军,叶荣. 基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计. 江苏农业科学. 2024(20): 220-227 .
    7. 刘拥民,刘翰林,石婷婷,欧阳金怡,黄浩,谢铁强. 一种优化的Swin Transformer番茄叶片病害识别方法. 中国农业大学学报. 2023(04): 80-90 .
    8. 陈从平,钮嘉炜,丁坤,姜金涛. 基于深度学习的马铃薯病害智能识别. 计算机仿真. 2023(02): 214-217+222 .
    9. 王磊,袁英,高玲. 基于改进多元宇宙算法的番茄病害图像识别. 中国农机化学报. 2023(05): 176-181+222 .
    10. 王明英,王嘉,裴志远,李宇豪,李荣荣. 基于深度学习的番茄叶部病害识别方法研究. 农业灾害研究. 2023(08): 25-27 .
    11. 李云红,张蕾涛,谢蓉蓉,朱景坤,刘杏瑞. 基于AT-DenseNet网络的番茄叶片病害识别方法. 江苏农业科学. 2023(21): 209-217 .
    12. 牛学德,高丙朋,南新元,石跃飞. 基于改进DenseNet卷积神经网络的番茄叶片病害检测. 江苏农业学报. 2022(01): 129-134 .
    13. 陆仲达,张春达,张佳奇,王子菲,许军华. 双分支网络的苹果叶部病害识别. 计算机科学与探索. 2022(04): 917-926 .
    14. 刘晓锋,高丽梅. 基于改进空间残差收缩网络模型的农作物病虫害识别. 山东农业大学学报(自然科学版). 2022(02): 259-264 .
    15. 徐志京,孙久武,霍煜豪. 多特征区域的细粒度船舶图像目标识别方法. 计算机工程与应用. 2022(10): 224-230 .
    16. 胡玲艳,周婷,刘艳,许巍,盖荣丽,李晓梅,裴悦琨,汪祖民. 基于轻量级网络自适应特征提取的番茄病害识别. 江苏农业学报. 2022(03): 696-705 .
    17. 贾兆红,张袁源,王海涛,梁栋. 基于Res2Net和双线性注意力的番茄病害时期识别方法. 农业机械学报. 2022(07): 259-266 .
    18. 赵子皓,杨再强. 番茄不同病害类型的图像特征精准识别仿真. 计算机仿真. 2022(10): 245-249 .
    19. 田佳鹭,邓立国. 结合嵌入模块的细粒度图像分类方法. 现代计算机. 2021(11): 106-110 .
    20. 张宁,吴华瑞,韩笑,缪祎晟. 基于多尺度和注意力机制的番茄病害识别方法. 浙江农业学报. 2021(07): 1329-1338 .
    21. 马宇,单玉刚,袁杰. 基于三通道注意力网络的番茄叶部病害识别. 科学技术与工程. 2021(25): 10789-10795 .
    22. 齐永锋,张宁宁. 基于多任务学习的番茄叶片图像病害程度分类. 光电子·激光. 2021(08): 833-840 .
    23. Wen Xin,Jia Yin-jiang,Su Zhong-bin. Identification of Typical Rice Diseases Based on Interleaved Attention Neural Network. Journal of Northeast Agricultural University(English Edition). 2021(04): 87-96 .
    24. 吴开兴,苗雪菲,马文妙. 基于卷积神经网络的番茄叶部病害识别研究. 电脑知识与技术. 2020(25): 25-27 .
    25. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 改进Multi-scale ResNet的蔬菜叶部病害识别. 农业工程学报. 2020(20): 209-217 .

    Other cited types(45)

Catalog

    Article views (1541) PDF downloads (1546) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return