• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YANG Dexue, CHEN Liangzhu, LAI Lihong, REN Miaoxian, ZHANG Guijun, PAN Zhikun, FANG Binghu. Research on pharmacokinetics and bioavailability of pleuromutilin derivative BC-7013 in chickens[J]. Journal of South China Agricultural University, 2015, 36(4): 26-31. DOI: 10.7671/j.issn.1001-411X.2015.04.005
Citation: YANG Dexue, CHEN Liangzhu, LAI Lihong, REN Miaoxian, ZHANG Guijun, PAN Zhikun, FANG Binghu. Research on pharmacokinetics and bioavailability of pleuromutilin derivative BC-7013 in chickens[J]. Journal of South China Agricultural University, 2015, 36(4): 26-31. DOI: 10.7671/j.issn.1001-411X.2015.04.005

Research on pharmacokinetics and bioavailability of pleuromutilin derivative BC-7013 in chickens

More Information
  • Received Date: April 20, 2014
  • Available Online: May 17, 2023
  • Objective 

    The pharmacokinetical characteristics and bioavailability of pleuromutilin derivative BC-7013 in chickens were investigated.

    Method 

    Twenty chickens were randomly divided into two groups for pharmacokinelical experiments after a single intravenous(2.5 mg·kg-1) and oral administra tion(15 mg·kg-1).Blood samples were collected at different intervals after the administration of deriv ative BC-7013.The concentrations of derivative BC-7013 in plasma were determined by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS /MS) with internal standard method.Plas ma concentration-time profiles of derivative BC-7013 were analyzed by using non-compartmental analysis WinNonlin 5.2 software.

    Result and conclusion 

    The main pharmacokinetical parameters of i.v.ad ministration were as follows: t1/2β=(1.37 ± 0.14) h, Vd=(1.87 ± 0.25) L·kg-1, AUC(0→∞)=(2.83 ± 0.56) μg·L-1·h, CL=(1.14 ± 0.28) L·h-1·kg-1.The major pharmacokinetical parameters of oral administration were as follows: tmax=(1.94 ± 0.26) h, Cmax=(126.18 ± 6.54) ng·mL-1, AUC(0→∞)=(1.38 ± 0.21) μg·mL-1·h, MRT=(9.49 ± 0.57) h, F=(10.37 ± 1.48) %. The results show that the pharmacokinetical characteristics of pleuromutilin derivative BC-7013 in healthy chicken manifest wide distribution, rapid elimination as well as incomplete absorption and low oral bioavailability.

  • [1]
    尚若锋, 梁剑平, 刘宇, 等.截短侧耳素类抗生素研究进展[J].中兽医医药杂志, 2010, 3(29):25-28. http://d.old.wanfangdata.com.cn/Periodical/zsyyyzz201003008
    [2]
    HANNAN P C, WINDSOR H M, RIPLEY P H.In vitro susceptibilities of recent field isolates of Mycoplasma hyopneumoniae and Mycoplasma hyosynoviae to valnemulin (Econor), tiamulin and enrofloxacin and the in vitro development of resistance to certain antimicrobial agents in Mycoplasma hyopneumoniae[J].Res Vet Sci, 1997, 63(2):157-160. doi: 10.1016/S0034-5288(97)90010-2
    [3]
    PARISH L C, PARISH J L.Retapamulin:A new topical antibiotic for the treatment of uncomplicated skin infections[J].Drug Today, 2008, 44(2):91-102. doi: 10.1358/dot.2008.44.2.1153446
    [4]
    茅迪, 蔡正艳, 周伟澄, 等.妙林类抗生素的研究进展[J].中国医药工业杂志, 2010, 41:357-383. http://d.old.wanfangdata.com.cn/Periodical/zgyygy201005016
    [5]
    BIEDENBACH D J, JONES R N, IVEZIC-SCHOENFELD Z, et al. In vitro antibacterial spectrum of BC-7013, a novel pleuromutilin derivative for topical use in humans[EB/OL]. Nabriva Therapeutics A G, ICAAC, 2009, F1-1521 [2014-04-02]. http://www.nabriva.com/fileadmin/con tent/ICAAC_2009/F1-1521_In_vitro_antibacterial_spec trum_of_BC-7013.pdf.
    [6]
    李晓宇, 王广基, 巫冠中, 等.化合物G004在大鼠体内的绝对生物利用度研究[J].中国药理学通报, 2006, 22(6):698-701. doi: 10.3321/j.issn:1001-1978.2006.06.014
    [7]
    王蕊. 沃尼妙林在鸡体内的药动学及残留消除规律研究[D]. 广州: 华南农业大学, 2010.
    [8]
    魏树礼, 张强.生物药剂学与药物动力学[M].北京:北京大学医学出版社, 2004:16.
    [9]
    颜虎. 沃尼妙林在肉鸡体内的药动学及其组织残留研究[D]. 南昌: 江西农业大学, 2012.
    [10]
    LABER G, SCHUTZE E.Blood level studies in chickens, turkey poults and swine with tiamulin, a new antibiotic[J].J Antibiot, 1977, 30(12):1119-1121. doi: 10.7164/antibiotics.30.1119
    [11]
    WICHA W W, LELL C, STRICKMANN D B, et al. Safety, tolerability and pharmacokinetics of orally administered BC-3781, a novel antimicrobial[EB/OL]. Nabriva Thera peutics A G, Poster ICAAC, 2013, A-012[2014-04-05]. http://www.nabriva.com/fileadmin/content/ICAAC_2013/A-012_BC-3781_Safety_Tolerability_and_PK_oral_Phase_1.pdf.
    [12]
    曾东平, 严楚, 孙永学, 等.沃尼妙林在猪体内的生物利用度及药代动力学研究[J].中国兽医科学, 2010, 40(10):1076-1079. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002301802
    [13]
    PINNAMANENI S, DAS N G, DAS S K.Formulation ap proaches for orally administered poorly soluble drugs[J].Pharmazie, 2002, 57(5):291-300.
  • Cited by

    Periodical cited type(25)

    1. 白尚旺,王梦瑶,胡静,陈志泊. 多区域注意力的细粒度图像分类网络. 计算机工程. 2024(01): 271-278 .
    2. 李名博,任东悦,郭俊旺,卫勇. 基于改进YOLOX-S的玉米病害识别. 江苏农业科学. 2024(03): 237-246 .
    3. 李显娜,吴强,张一丹,周康. 自监督学习下小样本番茄叶片病害检测. 中国农机化学报. 2024(07): 172-179 .
    4. 韩鹏飞,宋其江,贾梦实. 基于改进轻量化EfficientNet-V2模型的小麦种子分类. 中国农机化学报. 2024(09): 111-117 .
    5. 黄志龙. 基于改进YOLOv5s的番茄叶片病虫害识别方法. 电大理工. 2024(03): 1-7+17 .
    6. 高泉,刘笠溶,张洁,高颜军,叶荣. 基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计. 江苏农业科学. 2024(20): 220-227 .
    7. 刘拥民,刘翰林,石婷婷,欧阳金怡,黄浩,谢铁强. 一种优化的Swin Transformer番茄叶片病害识别方法. 中国农业大学学报. 2023(04): 80-90 .
    8. 陈从平,钮嘉炜,丁坤,姜金涛. 基于深度学习的马铃薯病害智能识别. 计算机仿真. 2023(02): 214-217+222 .
    9. 王磊,袁英,高玲. 基于改进多元宇宙算法的番茄病害图像识别. 中国农机化学报. 2023(05): 176-181+222 .
    10. 王明英,王嘉,裴志远,李宇豪,李荣荣. 基于深度学习的番茄叶部病害识别方法研究. 农业灾害研究. 2023(08): 25-27 .
    11. 李云红,张蕾涛,谢蓉蓉,朱景坤,刘杏瑞. 基于AT-DenseNet网络的番茄叶片病害识别方法. 江苏农业科学. 2023(21): 209-217 .
    12. 牛学德,高丙朋,南新元,石跃飞. 基于改进DenseNet卷积神经网络的番茄叶片病害检测. 江苏农业学报. 2022(01): 129-134 .
    13. 陆仲达,张春达,张佳奇,王子菲,许军华. 双分支网络的苹果叶部病害识别. 计算机科学与探索. 2022(04): 917-926 .
    14. 刘晓锋,高丽梅. 基于改进空间残差收缩网络模型的农作物病虫害识别. 山东农业大学学报(自然科学版). 2022(02): 259-264 .
    15. 徐志京,孙久武,霍煜豪. 多特征区域的细粒度船舶图像目标识别方法. 计算机工程与应用. 2022(10): 224-230 .
    16. 胡玲艳,周婷,刘艳,许巍,盖荣丽,李晓梅,裴悦琨,汪祖民. 基于轻量级网络自适应特征提取的番茄病害识别. 江苏农业学报. 2022(03): 696-705 .
    17. 贾兆红,张袁源,王海涛,梁栋. 基于Res2Net和双线性注意力的番茄病害时期识别方法. 农业机械学报. 2022(07): 259-266 .
    18. 赵子皓,杨再强. 番茄不同病害类型的图像特征精准识别仿真. 计算机仿真. 2022(10): 245-249 .
    19. 田佳鹭,邓立国. 结合嵌入模块的细粒度图像分类方法. 现代计算机. 2021(11): 106-110 .
    20. 张宁,吴华瑞,韩笑,缪祎晟. 基于多尺度和注意力机制的番茄病害识别方法. 浙江农业学报. 2021(07): 1329-1338 .
    21. 马宇,单玉刚,袁杰. 基于三通道注意力网络的番茄叶部病害识别. 科学技术与工程. 2021(25): 10789-10795 .
    22. 齐永锋,张宁宁. 基于多任务学习的番茄叶片图像病害程度分类. 光电子·激光. 2021(08): 833-840 .
    23. Wen Xin,Jia Yin-jiang,Su Zhong-bin. Identification of Typical Rice Diseases Based on Interleaved Attention Neural Network. Journal of Northeast Agricultural University(English Edition). 2021(04): 87-96 .
    24. 吴开兴,苗雪菲,马文妙. 基于卷积神经网络的番茄叶部病害识别研究. 电脑知识与技术. 2020(25): 25-27 .
    25. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 改进Multi-scale ResNet的蔬菜叶部病害识别. 农业工程学报. 2020(20): 209-217 .

    Other cited types(45)

Catalog

    Article views (1575) PDF downloads (1353) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return