LÜ Shengping, LÜ Enli, LU Huazhong, YANG Songxia, FANG Sizhen. Cooling characteristics of different precooling methods for litchi[J]. Journal of South China Agricultural University, 2015, 36(3): 114-119. DOI: 10.7671/j.issn.1001-411X.2015.03.020
    Citation: LÜ Shengping, LÜ Enli, LU Huazhong, YANG Songxia, FANG Sizhen. Cooling characteristics of different precooling methods for litchi[J]. Journal of South China Agricultural University, 2015, 36(3): 114-119. DOI: 10.7671/j.issn.1001-411X.2015.03.020

    Cooling characteristics of different precooling methods for litchi

    More Information
    • Received Date: March 17, 2014
    • Available Online: May 17, 2023
    • Objective 

      To study the cooling characteristics of different precooling methods for litchi.

      Method 

      A pressure-difference precooling test chamber was established. Four precooling methods, including ice water(L1), cold storage(L2), pressure-difference(L3) and forced-air pressure-difference with high humidity (L4), were adopted for "Huaizhi" litchi.

      Result and conclusion 

      The results showed that L1, L2, L3 and L4 spent 35, 55, 64 and 345 min respectively to precool the litchi down to the target temperature (5 ℃). The cooling procedure of litchi fruit at different positions for L1 performed no significant difference. L2 took 195, 258 and 228 min to precool litchi at left and right positions and top layer respectively. However, the fruit temperature at middle and bottom layer and middle position were still up to 5.37, 6.16 and 7.37 ℃ respectively after 345 min precooling; and the cooling procedure of litchi fruit showed significant differences between the left, right position and its middle position. L3 took 39, 52, 42 min to precool litchi at the left and right positions and top layer respectively. However, the fruit temperature at middle and bottom layers and middle position were still up to 6.03, 5.67 and 9.03 ℃ respectively after 55 min precooling. The cooling procedure of litchi fruit showed significant difference among the top layer, left position and its middle and bottom layers. L4 spent 39 and 41 min to precool litchi at the left position and top layer respectively. However, the fruit temperature at the middle and bottom layers, middle and right positions were still respectively up to 5.86, 8.83, 7.87 and 6.63 ℃ after 64 min precooling. The cooling procedure of litchi fruit showed a significant difference between the left position and its middle position. L1 has high cooling efficiency and good fruit temperature uniformity, which is suitable for cooling litchi.

    • [1]
      佚名. 荔枝预冷的目的与作用[EB /OL]. (2013-08-08). [2014-03-17 ]. http://lzlytx.scau.edu.cn/html/yanfazhongxin/zongheshiyanzhan/zhangzhouzongh/2012/0314/106.html.
      [2]
      阮文琉, 刘宝林, 宋晓燕.荔枝的冷却方式选择[J].食品工业科技, 2012, 11: 352-353. http://d.old.wanfangdata.com.cn/Conference/7566766
      [3]
      LIN H T, CHEN S J, XI Y F. Commercial postharvest handling and storage technology of litchi fruit[J]. Trans CSAE, 2003, 5(19): 126-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200305026
      [4]
      王倩, 戴绍碧, 徐娓, 等.荔枝产地预冷装置的开发研究与实验[J].农机化研究, 2012, 7: 100-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhyj201207024
      [5]
      段洁利, 杨洲, 马征, 等.荔枝果实通风预冷试验研究[J].食品科学, 2007, 28 (7): 504-507. doi: 10.3321/j.issn:1002-6630.2007.07.124
      [6]
      杨洲, 陈朝海, 段洁利, 等.荔枝压差预冷包装箱内气流场模拟与试验[J].农业机械学报, 2012, 10 (42): 215-217. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb2012z1043
      [7]
      宋晓燕, 刘宝林.真空冷却中的上海青表面温度变化规律[J].农业工程学报, 2012, 28 (1): 266-269. doi: 10.3969/j.issn.1002-6819.2012.01.047
      [8]
      宋小勇, 李云飞, 邓云, 等.鲜切花真空预冷过程温度的红外热成像检测[J].农业机械学报, 2009, 40 (11): 129-132. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb200911027
      [9]
      DEHGANNYA J. NGADI M. VIGNEAULT C. Mathematic al modeling of airflow and heat transfer during forced convection cooling of produce considering various package vent areas[J]. Food Contr, 2011, 22: 1393-1399. doi: 10.1016/j.foodcont.2011.02.019
      [10]
      ZOU Q A, OPARA L U, MCKIBBIN R. A CFD modeling system for air flow and heat transfer in ventilated packaging for fresh foods: Ⅱ: Computational solution, software development, and model testing[J]. J Food Eng, 2006, 77 (4): 1048-1058. doi: 10.1016/j.jfoodeng.2005.08.043
      [11]
      DEFRAEYE T, VERBOVEN P, NICOLAI B. CFD modeling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modeling[J]. J Food Eng, 2013, 114(2): 495-504. doi: 10.1016/j.jfoodeng.2012.09.003
      [12]
      吕恩利, 陆华忠, 杨洲, 等番茄差压预冷过程中的通风阻力特性[J].农业工程学报, 2010, 26 (7): 341-345. doi: 10.3969/j.issn.1002-6819.2010.07.060
      [13]
      杨洲, 赵春娥, 汪刘一, 等.龙眼果实差压预冷过程中的阻力特性[J].农业机械学报, 2007, 38 (1): 104-107. doi: 10.3969/j.issn.1000-1298.2007.01.027
    • Cited by

      Periodical cited type(19)

      1. 钱卫星,郑东. 动态环境监测系统的设计. 集成电路应用. 2024(03): 186-187 .
      2. 陈雄,罗海波. 碳汇渔业贝类养殖监测管理系统的设计与开发. 闽江学院学报. 2024(05): 51-58 .
      3. 罗潜,吉艺宽,李美娣. 基于STM32和ZigBee的水产养殖水质监测系统设计. 仪器仪表用户. 2023(08): 22-26 .
      4. 杨智玲,程玮. 基于无人机遥感技术的渔业养殖池塘水质监测方法. 太原师范学院学报(自然科学版). 2023(02): 35-40 .
      5. 余钱程,管延敏,黄温赟,韦龙,虞嘉晨. 基于STM32与树莓派的养殖水质监测无人艇系统研究. 渔业现代化. 2023(05): 33-42 .
      6. 林盾,怀晓伟,宁睿. 面向电网基建现场的LoRa通信低功耗组网控制技术的优化设计. 自动化应用. 2023(22): 73-75 .
      7. 杨智玲. 无人机技术在水产养殖作业通信系统中的应用. 长江信息通信. 2022(04): 1-3 .
      8. 孔兵,余梅,乔欣. 基于LoRa无线通信的水产养殖水质监测系统设计. 滨州学院学报. 2022(02): 74-80 .
      9. 任晓亮,施羽露,廖河庭,杨晓曦,钱信宇,郑尧,陈家长. 水产环境污染现状及治理策略. 农学学报. 2022(05): 42-46 .
      10. 闫尉深,刘威,刘家俊,李志达. 基于无线技术的隧道积水监测系统设计. 电子设计工程. 2022(14): 137-141 .
      11. 李阳东,漆林,笪亨融,谢洋洋. 基于物联网的近海岸水质监测平台方案设计. 海岸工程. 2022(03): 268-276 .
      12. 康晋. 基于LoRa无线通信的工业机器人远程监控系统设计. 计算机测量与控制. 2022(09): 119-124+132 .
      13. 肖军. 基于无线通信技术的医院信息管理系统设计. 自动化技术与应用. 2022(11): 107-111 .
      14. 巫鹏航,王锦鹏,朱敬宾,郭来功. 基于STM32与LabVIEW的地下水压水温监测系统设计. 长春师范大学学报. 2021(04): 43-47 .
      15. 覃伟锋,郝文杰,莫胜胜,龙应萍,蔡世媚,范嘉晨. 基于云服务的水产养殖水质监测系统. 电子制作. 2021(10): 30-32 .
      16. 胡颖,徐轶群. 基于窄带物联网通信的海洋水质监测系统设计. 广州航海学院学报. 2021(02): 14-19 .
      17. 谭明,曾海涛,王田. 基于无线通信的换流阀冷却塔温度监测系统设计. 电工技术. 2021(12): 8-9+12 .
      18. 颜瑞,王震,李言浩,李哲敏,李娴. 中国农业智能传感器的应用、问题与发展. 农业大数据学报. 2021(02): 3-15 .
      19. 尹航,廖梓渊,徐龙琴,刘双印,曹亮,郭建军. 基于ECharts的对虾产业数据可视化分析平台设计及实现. 现代农业装备. 2021(04): 7-14 .

      Other cited types(12)

    Catalog

      Article views (1577) PDF downloads (2522) Cited by(31)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return