ZHANG Hui, SONG Yuanyuan, LÜ Shun, GUO Jingjing, ZENG Rensen. The antifungal activity and crop growth stimulation of growth-promoting rhizobacteria from banana rhizosphere soil[J]. Journal of South China Agricultural University, 2015, 36(3): 65-70. DOI: 10.7671/j.issn.1001-411X.2015.03.012
    Citation: ZHANG Hui, SONG Yuanyuan, LÜ Shun, GUO Jingjing, ZENG Rensen. The antifungal activity and crop growth stimulation of growth-promoting rhizobacteria from banana rhizosphere soil[J]. Journal of South China Agricultural University, 2015, 36(3): 65-70. DOI: 10.7671/j.issn.1001-411X.2015.03.012

    The antifungal activity and crop growth stimulation of growth-promoting rhizobacteria from banana rhizosphere soil

    More Information
    • Received Date: January 13, 2014
    • Available Online: May 17, 2023
    • Objective 

      To investigate the inhibitory effects of four banana growth-promoting rhizobacteria (PGPR) on Fusarium oxysporum f. sp. cubense race 4 and several other important crop pathogens.

      Method 

      The antifungal activity of PGPR was evaluated in petri dish. The promoting effect of PGPR fermented broth on plant growth was determined in a pot experiment.

      Result and conclusion 

      Four strains of PGPR including Bacillus subtilis, B. amyloliquefaciens, Pseudomonas otitidis and Ps. choloeaphtis isolated from rhizosphere soil of a healthy banana orchard showed a strong inhibitory effect on Fusarium oxysporum f. sp. cubense race 4, a causal agent of banana Fusarium wilt. The four bacteria also displayed antifungal activities against other tested crop pathogens including Alternaria solani, Rhizoctonia solani, Colletotrichum gloeosporioides Penz., C. musarum, F.oxysporum(Schl.) f.sp cucumerinum Owen, F. graminearum and Penorophythora litchi Chen. Ps. otitidis grew much faster than the other three bacteria, and the growth radius of Ps. otitidis was 2.75-, 2.61- and 2.70-fold relative to B. subtilis, B. amyloliquefaciens and Ps. choloeaphtis respectively. Ps. otitidis showed the best inhibitory effect on the tested crop pathogens, and the pathogen inhibition rate of Ps. otitidis to Fusarium oxysporum f. sp. cubense race 4, A. solani, R. solani, C. gloeosporioides Penz., C. musae, F.oxysporum (Schl.) f.sp cucumerinum Owen, F. graminearum and Pe. litchi was 50.70%, 62.95%, 70.85%, 68.10%, 58.58%, 59.30%, 51.34% and 63.08% respectively. The fermented broth of Ps. otitidis stimulated the seedling growth of tomatoes and corns, and it increased their shoot height by 16% and 33% respectively. It also increased the chlorophyll content of tomatoes by 40%. These results suggest that Ps. otitidis has strong antifungal activity against crop pathogens and also stimulate the growth of tomatoes and corns.

    • [1]
      崔薇薇.植物根际促生菌的研究进展[J].辽宁农业科学, 2010(2):35-39. doi: 10.3969/j.issn.1002-1728.2010.02.010
      [2]
      程洁, 梅丽娟, 胡健, 等.植物根际促生菌作用机制研究进展[J].应用生态学报, 2010, 21(1):232-238. http://d.old.wanfangdata.com.cn/Periodical/hnnykjtx-e201401020
      [3]
      MAKSIMOV I V, ABIZGIL DINA R R, PUSENKOVA L I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens(review)[J]. Appl Biochem Microbiol, 2011, 47(4):333-345. doi: 10.1134/S0003683811040090
      [4]
      GRAY E J, SMITH D L. Intracellular and extracellular PGPR:Commonalities and distinctions in the plant-bacte- rium signaling processes[J]. Soil Biol Biochem, 2005, 37(3):395-412. doi: 10.1016/j.soilbio.2004.08.030
      [5]
      RYU C, FARAG M A, HU C, et al. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physi- ol, 2004, 134(3):1017-1026. doi: 10.1104/pp.103.026583
      [6]
      DWIVEDI D, JOHRI B N. Antifungals from Fluorescent pseudomonads:Biosynthesis and regulation[J]. Curr Sci, 2003, 85(12):1693-1703. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029032267/
      [7]
      PODILE A R, KISHORE G K. Plant growth-promoting rhizobacteria[M] //Anon. Plant-associated bacteria. Ber- lin: Springer, 2006: 195-230.
      [8]
      PÉREZ L. Fusarium wilt(Panama disease)of bananas:An updating review of the current knowledge on the disease and its causal agent[J]. Fitosanidad, 2004, 8(4):27-38.
      [9]
      TU C C, CHANG Y C, CHENG Y H, et al. Studies on the biological control of Panama disease(Fusarium wilt)of banana[J]. Tainan Dais Res Bull, 1980, 14:1-12. http://www.cabdirect.org/abstracts/19810393886.html
      [10]
      VILJOEN A. The status of Fusarium wilt(Panama disease)of banana in South Africa[J]. S Afr J Sci, 2002, 98:341-344. http://agris.fao.org/agris-search/search.do?recordID=ZA2002000970
      [11]
      WAITE B H. Inoculation studies and natural infection of banana varieties with races 1 and 2 of Fusarium oxysporum f. sp. cubense[J]. Plant Dis Rep, 1977, 61:15-19.
      [12]
      侯福林.植物生理学模块实验指导[M].北京:科学出版社, 2004:57-58.
      [13]
      ISLAM M, SULTANA T, JOE M M, et al. Nitrogen-fixing bacteria with multiple plant growth-promoting activities en- hance growth of tomato and red pepper[J]. J Basic Micro- biol, 2013, 53(12):1004 - 1015. doi: 10.1002/jobm.v53.12
      [14]
      RAVISANKAR D, NITHYA C. Significance and Applica- tions of plant growth promoting rhizobacteria(PGPR)in agriculture:A review[J]. J Agri Sci Tech, 2013:1(3):19-32.
      [15]
      ANNAPURNA K, KUMAR A, KUMAR L V, et al. PG- PR-induced systemic resistance(ISR)in plant disease management[M] // Anon. Bacteria in agrobiology: Dis- ease management. Berlin: Springer, 2013: 405-425.
      [16]
      SARAF M, RAJKUMAR S, SAHA T. Perspectives of PG- PR in Agri-ecosystems[M] // Anon. Bacteria in agrobiol- ogy: Crop ecosystems. Berlin: Springer, 2011: 361-385.
      [17]
      REDDY M V, NIKHIL G N, MOHAN S V, et al. Pseudomonas otitidis as a potential biocatalyst for polyhydroxyal- kanoates(PHA)synthesis using synthetic wastewater and acidogenic effluents[J]. Bioresou Technol, 2012, 123:471-479. doi: 10.1016/j.biortech.2012.07.077
      [18]
      WU J, JUNG B G, KIM K S, et al. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes [J]. J Environm Sci, 2009, 21(7):960-964. doi: 10.1016/S1001-0742(08)62368-2
      [19]
      霍宪起, 陈京元. 4种荧光假单胞菌拮抗菌株对湿地松猝倒病病原菌的抑制效果[J].东北林业大学学报, 2010, 38(9):108-109. doi: 10.3969/j.issn.1000-5382.2010.09.032
      [20]
      张伟琼, 聂明, 肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志, 2007, 24(3):9-11. doi: 10.3969/j.issn.2095-1736.2007.03.003
      [21]
      KIM Y H. Antiviral, antimicrobial, and cytotoxic proper- ties of peptavirins A and B produced by Apiocrea sp. 14T [J]. Plant Pathol J, 2002, 18(1):18-22. doi: 10.5423/PPJ.2002.18.1.018
      [22]
      BEN A M R, SIOUD S, FOURATI B F L, et al. Purifica- tion and structure determination of four bioactive molecules from a newly isolated Streptomyces sp. TN97 strain[J]. Proc Biochem, 2006, 41(7):1506-1513. doi: 10.1016/j.procbio.2006.02.010
      [23]
      RADZOM M, ZEECK A, ANTAL N, et al. Fogacin, a novel cyclic octaketide produced by Streptomyces strain Tü 6319[J]. J Antibiot, 2006, 59(5):315-317. doi: 10.1038/ja.2006.45
      [24]
      DOBBELAERE S, CROONENBORGHS A, THYS A, et al. Responses of agronomically important crops to inocula- tion with Azospirillum[J]. Functi Plant Biol, 2001, 28(9):871-879. doi: 10.1071/PP01074
      [25]
      黄晓东, 卢林纲.植物促生菌及其促生机理(续)[J].现代化农业, 2002(7):13-15. doi: 10.3969/j.issn.1001-0254.2002.07.005
      [26]
      盛下放.硅酸盐细菌NBT菌株在小麦根际定殖的初步研究[J].应用生态学报, 2003, 14(11):1914-1916. doi: 10.3321/j.issn:1001-9332.2003.11.023
      [27]
      陈国民, 肖静, 李友国, 等.从植物根际分离的8株细菌的促生作用与初步鉴定[J].湖北农业科学, 2008, 47(1):39-41. doi: 10.3969/j.issn.0439-8114.2008.01.015
    • Cited by

      Periodical cited type(19)

      1. 钱卫星,郑东. 动态环境监测系统的设计. 集成电路应用. 2024(03): 186-187 .
      2. 陈雄,罗海波. 碳汇渔业贝类养殖监测管理系统的设计与开发. 闽江学院学报. 2024(05): 51-58 .
      3. 罗潜,吉艺宽,李美娣. 基于STM32和ZigBee的水产养殖水质监测系统设计. 仪器仪表用户. 2023(08): 22-26 .
      4. 杨智玲,程玮. 基于无人机遥感技术的渔业养殖池塘水质监测方法. 太原师范学院学报(自然科学版). 2023(02): 35-40 .
      5. 余钱程,管延敏,黄温赟,韦龙,虞嘉晨. 基于STM32与树莓派的养殖水质监测无人艇系统研究. 渔业现代化. 2023(05): 33-42 .
      6. 林盾,怀晓伟,宁睿. 面向电网基建现场的LoRa通信低功耗组网控制技术的优化设计. 自动化应用. 2023(22): 73-75 .
      7. 杨智玲. 无人机技术在水产养殖作业通信系统中的应用. 长江信息通信. 2022(04): 1-3 .
      8. 孔兵,余梅,乔欣. 基于LoRa无线通信的水产养殖水质监测系统设计. 滨州学院学报. 2022(02): 74-80 .
      9. 任晓亮,施羽露,廖河庭,杨晓曦,钱信宇,郑尧,陈家长. 水产环境污染现状及治理策略. 农学学报. 2022(05): 42-46 .
      10. 闫尉深,刘威,刘家俊,李志达. 基于无线技术的隧道积水监测系统设计. 电子设计工程. 2022(14): 137-141 .
      11. 李阳东,漆林,笪亨融,谢洋洋. 基于物联网的近海岸水质监测平台方案设计. 海岸工程. 2022(03): 268-276 .
      12. 康晋. 基于LoRa无线通信的工业机器人远程监控系统设计. 计算机测量与控制. 2022(09): 119-124+132 .
      13. 肖军. 基于无线通信技术的医院信息管理系统设计. 自动化技术与应用. 2022(11): 107-111 .
      14. 巫鹏航,王锦鹏,朱敬宾,郭来功. 基于STM32与LabVIEW的地下水压水温监测系统设计. 长春师范大学学报. 2021(04): 43-47 .
      15. 覃伟锋,郝文杰,莫胜胜,龙应萍,蔡世媚,范嘉晨. 基于云服务的水产养殖水质监测系统. 电子制作. 2021(10): 30-32 .
      16. 胡颖,徐轶群. 基于窄带物联网通信的海洋水质监测系统设计. 广州航海学院学报. 2021(02): 14-19 .
      17. 谭明,曾海涛,王田. 基于无线通信的换流阀冷却塔温度监测系统设计. 电工技术. 2021(12): 8-9+12 .
      18. 颜瑞,王震,李言浩,李哲敏,李娴. 中国农业智能传感器的应用、问题与发展. 农业大数据学报. 2021(02): 3-15 .
      19. 尹航,廖梓渊,徐龙琴,刘双印,曹亮,郭建军. 基于ECharts的对虾产业数据可视化分析平台设计及实现. 现代农业装备. 2021(04): 7-14 .

      Other cited types(12)

    Catalog

      Article views (1883) PDF downloads (1851) Cited by(31)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return