GUO Tao, SHEN Renjia, WANG Jiafeng. Research progress on genetic transformation methods of rice[J]. Journal of South China Agricultural University, 2023, 44(6): 843-853. DOI: 10.7671/j.issn.1001-411X.202307001
    Citation: GUO Tao, SHEN Renjia, WANG Jiafeng. Research progress on genetic transformation methods of rice[J]. Journal of South China Agricultural University, 2023, 44(6): 843-853. DOI: 10.7671/j.issn.1001-411X.202307001

    Research progress on genetic transformation methods of rice

    More Information
    • Author Bio:

      GUO Tao:   郭 涛,研究员,博士生导师。现任国家植物航天育种工程技术研究中心主任,航天育种产业创新联盟副秘书长,国家植物航天育种工程技术研究中心河源创新研究院院长。基于新一代航天工程,开展水稻空间生物学研究,解析空间环境与遗传进化的分子关联,并开发水稻定向诱变育种新技术;结合分子标记和复合杂交,创制多基因聚合优异材料。获授权水稻生物育种关键技术专利12件;第一完成人培育水稻新品种6个;发表各类论文62篇,2篇论文入选中国精品科技期刊顶尖学术论文;现为国家重点研发计划课题负责人和国际原子能机构CRP项目首席科学家,并参与省部级科研项目26项。先后获广东省科技进步奖、教育部优秀成果奖、广东省专利奖、广东省农业技术推广奖等省部级科研奖励6项

    • Received Date: June 30, 2023
    • Available Online: November 12, 2023
    • Published Date: October 16, 2023
    • To introduce the development process and achievements of rice genetic transformation methods, and provide references for the research and application of rice genetic transformation system. Based on the two methods of bio-mediated transformation and abiotic-mediated transformation, the first report and important progress of various transformation methods were introduced, with the prospect at last. Among the bio-mediated transformation methods, Agrobacterium-mediated transformation method is applied by infecting rice embryo, panicle, callus tissue and stem tip. The transformation system of seed embryo and its induced callus as materials is mature, and the transformation method using panicle and stem tip is simple and convenient, with short transformation and regeneration cycle. In addition, preliminary studies have tried to transform rice with Sinorhizobium, Rhizobium and Ensifer adhaerens. Among the abiotic-mediated transformation methods, physical method transformation methods (particle bombardment, electroporation, pollen-tube pathway and microinjection) are more traditional transformation methods. The particle bombardment method is relatively mature, and the pollen-tube pathway method has made great progress in breeding. Among the medium-mediated transformation methods, the application of nanomaterials is gradually becoming a research hotspot. The development of rice genetic transformation can be initiated by selecting transformation materials and optimizing transformation vectors. Concurrently, integrating the transformation system with techniques like DNA-free and haploid induction can enhance both transformation efficiency and safety, while also reducing the duration of the transformation and regeneration process.

    • [1]
      张琴. 杂交水稻种业“走出去”的成功探索与发展趋势[J]. 中国稻米, 2021, 27(4): 104-106. doi: 10.3969/j.issn.1006-8082.2021.04.021
      [2]
      焦悦, 黄清, 费小吉, 等. 国外稻谷生产加工现状[J]. 粮油食品科技, 2022, 30(2): 68-76. doi: 10.16210/j.cnki.1007-7561.2022.02.009
      [3]
      GOFF S A, RICKE D, LAN T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296(5565): 92-100. doi: 10.1126/science.1068275
      [4]
      YU J, HU S N, WANG J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002, 296(5565): 79-92. doi: 10.1126/science.1068037
      [5]
      BAJAJ S, MOHANTY A. Recent advances in rice biotechnology: Towards genetically superior transgenic rice[J]. Plant Biotechnology Journal, 2005, 3(3): 275-307. doi: 10.1111/j.1467-7652.2005.00130.x
      [6]
      LUO L, XIE Y, YU S, et al. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa L. )[J]. The New Phytologist, 2023, 237(6): 2163-2179. doi: 10.1111/nph.18696
      [7]
      WAKASA Y, TAKAGI H, HIROSE S, et al. Oral immunotherapy with transgenic rice seed containing destructed Japanese cedar pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis[J]. Plant Biotechnology Journal, 2013, 11(1): 66-76. doi: 10.1111/pbi.12007
      [8]
      HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1): 205-218. doi: 10.1023/A:1005847615493
      [9]
      MOHAMMED S, SAMAD A A, RAHMAT Z. Agrobacterium-mediated transformation of rice: Constraints and possible solutions[J]. Rice Science, 2019, 26(3): 133-146. doi: 10.1016/j.rsci.2019.04.001
      [10]
      POTRYKUS I. Gene transfer to cereals: An assessment[J]. Trends in Biotechnology, 1989, 7(10): 269-273.
      [11]
      SOOD P, BHATTACHARYA A, SOOD A. Problems and possibilities of monocot transformation[J]. Biología Plantarum, 2011, 55(1): 1-15.
      [12]
      RAINERI D M, BOTTINO P, GORDON M P, et al. Agrobacterium-mediated transformation of rice (Oryza sativa L. )[J]. Nature Biotechnology, 1990, 8(1): 33-38.
      [13]
      CHAN M T, CHANG H H, HO S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene[J]. Plant Molecular Biology, 1993, 22(3): 491-506. doi: 10.1007/BF00015978
      [14]
      HIEI Y, OHTA S, KOMARI T, et al. Efficient transformation of rice (Oryza sativa L. ) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. The Plant Journal, 1994, 6(2): 271-282. doi: 10.1046/j.1365-313X.1994.6020271.x
      [15]
      ALDEMITA R R, HODGES T K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties[J]. Planta, 1996, 199(4): 612-617.
      [16]
      TOKI S, HARA N, ONO K, et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice[J]. The Plant Journal, 2006, 47(6): 969-976. doi: 10.1111/j.1365-313X.2006.02836.x
      [17]
      CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998.00343.x
      [18]
      ROD-IN W, SUJIPULI K, RATANASUT K. The floral-dip method for rice (Oryza sativa) transformation[J]. Journal of Agricultural Technology, 2014, 10(2): 467-474.
      [19]
      RATANASUT K, ROD-IN W, SUJIPULI K. In planta Agrobacterium-mediated transformation of rice[J]. Rice Science, 2017, 24(3): 181-186. doi: 10.1016/j.rsci.2016.11.001
      [20]
      SUSANTO F A, WIJAYANTI P, FAUZIA A N, et al. Establishment of a plant tissue culture system and genetic transformation for agronomic improvement of Indonesian black rice (Oryza sativa L. )[J]. Plant Cell, Tissue and Organ Culture, 2020, 141(3): 605-617. doi: 10.1007/s11240-020-01819-0
      [21]
      王蒂, 陈劲枫. 植物组织培养 [M]. 2版. 北京: 中国农业出版社, 2013: 64.
      [22]
      伍成祥, 宛煜嵩, 徐俊, 等. 水稻成熟胚盾片诱导愈伤组织再生体系的建立[J]. 热带作物学报, 2002, 23(3): 88-95.
      [23]
      JONES T J, ROST T L. The developmental anatomy and ultrastructure of somatic embryos from rice (Oryza sativa L. ) Scutellum epithelial cells[J]. Botanical Gazette, 1989, 150(1): 41-49. doi: 10.1086/337746
      [24]
      RASHID H, YOKOI S, TORIYAMA K, et al. Transgenic plant production mediated by Agrobacterium in indica rice[J]. Plant Cell Reports, 1996, 15(10): 727-730. doi: 10.1007/BF00232216
      [25]
      TRIPATHI R M, BISHT H S, SINGH R P. Effect of acetosyringone and callus age on transformation for scutellum-derived callus of rice[J]. International Journal of Pharma and Bio Sciences, 2010, 1(4): 163-171.
      [26]
      TRAN T N, SANAN-MISHRA N. Effect of antibiotics on callus regeneration during transformation of IR 64 rice[J]. Biotechnology Reports, 2015, 7: 143-149. doi: 10.1016/j.btre.2015.06.004
      [27]
      MOREL G M. Morphogenesis of stem apical meristem cultivated in vitro: Application to clonal propagation[J]. Phytomorphology, 1972, 22: 265-277.
      [28]
      RATNAYAKA I J S. Agrobacterium mediated gene transformation of rice: Comparison of callus and shoot apex derived plants[D]. College Station, Texas: Texas A&M University, 1999.
      [29]
      李君, 李岩, 刘德虎. 植物遗传转化的替代方法及研究进展[J]. 生物技术通报, 2011(7): 31-36. doi: 10.13560/j.cnki.biotech.bull.1985.2011.07.032
      [30]
      ULIAN E C, SMITH R H, GOULD J H, et al. Transformation of plants via the shoot apex[J]. In Vitro Cellular & Developmental Biology, 1988, 24(9): 951-954.
      [31]
      GOULD J H, DEVEY M E, HASEGAWA O, et al. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex[J]. Plant Physiology, 1991, 95(2): 426-434. doi: 10.1104/pp.95.2.426
      [32]
      PARK S H, PINSON S R M, SMITH R H. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices[J]. Plant Molecular Biology, 1996, 32(6): 1135-1148. doi: 10.1007/BF00041397
      [33]
      AROCKIASAMY S, IGNACIMUTHU S. Regeneration of transgenic plants from two indica rice (Oryza sativa L. ) cultivars using shoot apex explants[J]. Plant Cell Reports, 2007, 26(10): 1745-1753. doi: 10.1007/s00299-007-0377-9
      [34]
      DEY M, BAKSHI S, GALIBA G, et al. Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ[J]. 3 Biotech, 2012, 2(3): 233-240.
      [35]
      张佳, 王慧杰, 何正权, 等. 农杆菌介导的籼稻 9311 和华占遗传转化体系的研究[J]. 中国水稻科学, 2023, 37(2): 213.
      [36]
      NOTTENBURG C, RODRÍGUEZ C R. Agrobacterium-mediated gene transfer: A lawyer’s perspective. In: Agrobacterium: From Biology to Biotechnology[M]. New York: Springer, 2008: 699-735.
      [37]
      KLEIN D T, KLEIN R M. Transmittance of tumor-inducing ability to avirulent crown-gall and related bacteria[J]. Journal of Bacteriology, 1953, 66(2): 220-228. doi: 10.1128/jb.66.2.220-228.1953
      [38]
      BROOTHAERTS W, MITCHELL H J, WEIR B, et al. Gene transfer to plants by diverse species of bacteria[J]. Nature, 2005, 433(7026): 629-633. doi: 10.1038/nature03309
      [39]
      RAHMAWATI S, JEFFERSON O A, SOPANDIE D, et al. Comparative analysis of rice transformation using Agrobacterium tumefaciens and Rhyzobium leguminosarum[J]. Indonesian Journal of Biotechnology, 2010, 15(1): 37-45.
      [40]
      VELÁZQUEZ E, PALOMO J L, RIVAS R, et al. Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes[J]. Systematic and Applied Microbiology, 2010, 33(5): 247-251. doi: 10.1016/j.syapm.2010.04.004
      [41]
      WENDT T, DOOHAN F, MULLINS E. Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14[J]. Transgenic Research, 2012, 21(3): 567-578. doi: 10.1007/s11248-011-9553-3
      [42]
      ZUNIGA-SOTO E, MULLINS E, DEDICOVA B. Ensifer-mediated transformation: An efficient non-Agrobacterium protocol for the genetic modification of rice[J]. SpringerPlus, 2015, 4: 600. doi: 10.1186/s 40064-015-1369-9.
      [43]
      钟育海, 申艮宝. 植物基因的遗传转化方法[J]. 安徽农学通报, 2010, 16(11): 65-66. doi: 10.16377/j.cnki.issn1007-7731.2010.11.001
      [44]
      DAI S, ZHENG P, MARMEY P, et al. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment[J]. Molecular Breeding, 2001, 7(1): 25-33. doi: 10.1023/A:1009687511633
      [45]
      MCCABE D, CHRISTOU P. Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology)[J]. Plant Cell, Tissue and Organ Culture, 1993, 33(3): 227-236. doi: 10.1007/BF02319006
      [46]
      RUSSELL J A, ROY M K, SANFORD J C. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation[J]. Plant Physiology, 1992, 98(3): 1050-1056. doi: 10.1104/pp.98.3.1050
      [47]
      CHRISTOU P, FORD T L, KOFRON M. Production of transgenic rice (Oryza sativa L. ) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos[J]. Technology, 1991, 9(10): 957-962. doi: 10.1038/nbt1091-957
      [48]
      OARD J H, LINSCOMBE S D, BRAVERMAN M P, et al. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice[J]. Molecular Breeding, 1996, 2(4): 359-368. doi: 10.1007/BF00437914
      [49]
      ZHANG S, CHEN L, QU R, et al. Regeneration of fertile transgenic indica (group 1) rice plants following microprojectile transformation of embryogenic suspension culture cells[J]. Plant Cell Reports, 1996, 15(7): 465-469. doi: 10.1007/BF00232975
      [50]
      CAO J, DUAN X, MCEIROY D, et al. Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells[J]. Plant Cell Reports, 1992, 11(11): 586-591.
      [51]
      SRIVASTAVA V, OW D W. Biolistic mediated site-specific integration in rice[J]. Molecular Breeding, 2002, 8(4): 345-349. doi: 10.1023/A:1015229015022
      [52]
      CHO M J, YANO H, OKAMOTO D, et al. Stable transformation of rice (Oryza sativa L. ) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed[J]. Plant Cell Reports, 2004, 22(7): 483-489. doi: 10.1007/s00299-003-0713-7
      [53]
      LI D, HAN X, ZUO J, et al. Construction of rice site-specific chloroplast transformation vector and transient expression of EGFP gene in Dunaliella salina[J]. Journal of Biomedical Nanotechnology, 2011, 7(6): 801-806. doi: 10.1166/jbn.2011.1339
      [54]
      ELGHABI Z, KARCHER D, ZHOU F, et al. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome[J]. Plant Biotechnology Journal, 2011, 9(5): 599-608. doi: 10.1111/j.1467-7652.2011.00598.x
      [55]
      LEE S M, KANG K, CHUNG H, et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny[J]. Molecules and Cells, 2006, 21(3): 401-410.
      [56]
      LI D, TANG N, FANG Z, et al. Co-transfer of TALENs construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(12): 12194-12201. doi: 10.1166/jnn.2016.12949
      [57]
      YANG H, ZHANG H M, DAVEY M R, et al. Production of kanamycin resistant rice tissues following DNA uptake into protoplasts[J]. Plant Cell Reports, 1988, 7(6): 421-425. doi: 10.1007/BF00269528
      [58]
      王凤华, 刘俊, 童春义, 等. 电击法磁性纳米颗粒作为水稻转基因载体的研究[J]. 分析化学, 2010, 38(5): 617-621.
      [59]
      OU-LEE T M, TURGEON R, WU R. Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(18): 6815-6819. doi: 10.1073/pnas.83.18.6815
      [60]
      TORIYAMA K, ARIMOTO Y, UCHIMIYA H, et al. Transgenic rice plants after direct gene transfer into protoplasts[J]. Nature Biotechnology, 1988, 6(9): 1072-1074.
      [61]
      FUKUOKA H, KAWATA M, TAKAIWA F. Molecular changes of organelle DNA sequences in rice through dedifferentiation, long-term culture, or the morphogenesis process[J]. Plant Molecular Biology, 1994, 26(3): 899-907. doi: 10.1007/BF00028857
      [62]
      DE PÁDUA V L M, FERREIRA R P, MENESES L, et al. Transformation of Brazilian elite indica-type rice (Oryza sativa L. ) by electroporation of shoot apex explants[J]. Plant Molecular Biology Reporter, 2001, 19(1): 55-64. doi: 10.1007/BF02824078
      [63]
      REN Y, ZHAO J. Optimization of electroporation parameters for immature embryos of indica rice (Oryza sativa)[J]. Rice Science, 2008, 15(1): 43-50. doi: 10.1016/S1672-6308(08)60018-9
      [64]
      周光宇, 龚蓁蓁, 王自芬. 远缘杂交的分子基础: DNA 片段杂交假设的一个论证[J]. 遗传学报, 1979, 6(4): 405-413.
      [65]
      HESS D. Investigations on the intra-and interspecific transfer of anthocyanin genes using pollen as vectors[J]. Zeitschrift Für Pflanzenphysiologie, 1980, 98(4): 321-337.
      [66]
      SONG X, GU Y, QIN G. Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding[J]. Life Science Journal, 2007, 4(1): 77-79.
      [67]
      段晓岚, 陈善葆. 外源 DNA 导入水稻引起性状变异[J]. 中国农业科学, 1985, 3(6): 11.
      [68]
      LUO Z, WU R. A simple method for the transformation of rice via the pollen-tube pathway[J]. Plant Molecular Biology Reporter, 1989, 7(1): 169-177.
      [69]
      刘国权, 孟巧霞, 倪进斌, 等. 水稻花粉管通道法育种研究[J]. 中国农学通报, 2003, 19(5): 75-77. doi: 10.3969/j.issn.1000-6850.2003.05.026
      [70]
      何登骥, 詹庆才, 曾曙珍, 等. 利用外源 DNA 导入培育水稻品种研究新进展[J]. 作物研究, 2002, 16(2): 100-101. doi: 10.3969/j.issn.1001-5280.2002.02.023
      [71]
      王才林, 赵凌, 宗寿余, 等. 用花粉管通道法将 bar 基因导入水稻获得可遗传的转基因植株[J]. 江苏农业学报, 2002, 18(3): 129-133. doi: 10.3969/j.issn.1000-4440.2002.03.001
      [72]
      MATSUOKA H, KOMAZAKI T, MUKAI Y, et al. High throughput easy microinjection with a single-cell manipulation supporting robot[J]. Journal of Biotechnology, 2005, 116(2): 185-194. doi: 10.1016/j.jbiotec.2004.10.010
      [73]
      罗忠训, 万树青, 夏桂先, 等. 克隆的玉米醇溶蛋白基因向水稻的成功转移[J]. 生物工程学报, 1986, 2(2): 67. doi: 10.13345/j.cjb.1986.02.006
      [74]
      罗忠训, 万树青, 夏桂先, 等. 未传粉子房显微注射向水稻转移外源基因的研究[J]. 科学通报, 1987, 32(11): 863-865.
      [75]
      FURUTA K, OKAMOTO T. Establishment of a microinjection with isolated rice egg cells and zygotes[C]. Phytochemistry Regulation Society Research Publication Record Set, 2014: 49 (in Japanese).
      [76]
      BASKARAN P, DASGUPTA I. Gene delivery using microinjection of agrobacterium to embryonic shoot apical meristem of elite indica rice cultivars[J]. Journal of Plant Biochemistry and Biotechnology, 2012, 21(2): 268-274. doi: 10.1007/s13562-011-0078-x
      [77]
      FRAME B R, DRAYTON P R, BAGNALL S V, et al. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation[J]. The Plant Journal, 1994, 6(6): 941-948. doi: 10.1046/j.1365-313X.1994.6060941.x
      [78]
      NAGATANI N, HONDA H, SHIMADA T, et al. DNA delivery into rice cells and transformation using silicon carbide whiskers[J]. Biotechnology Techniques, 1997, 11(7): 471-473. doi: 10.1023/A:1018497529493
      [79]
      TERAKAWA T, HASEGAWA H, YAMAGUCHI M. Efficient whisker-mediated gene transformation in a combination with supersonic treatment[J]. Breeding Science, 2005, 55(4): 465-468. doi: 10.1270/jsbbs.55.465
      [80]
      MIZUNO K, TAKAHASHI W, OHYAMA T, et al. Improvement of the aluminum borate whisker-mediated method of DNA delivery into rice callus[J]. Plant Production Science, 2004, 7(1): 45-49. doi: 10.1626/pps.7.45
      [81]
      ALBANESE A, TANG P S, CHAN W C W. The effect of nanoparticle size, shape, and surface chemistry on biological systems[J]. Annual Review of Biomedical Engineering, 2012, 14: 1-16. doi: 10.1146/annurev-bioeng-071811-150124
      [82]
      WANG B, HUANG J, ZHANG M, et al. Carbon dots enable efficient delivery of functional DNA in plants[J]. ACS Applied Bio Materials, 2020, 3(12): 8857-8864. doi: 10.1021/acsabm.0c01170
      [83]
      MORTAZAVI S E, ZOHRABI Z. Biolistic co-transformation of rice using gold nanoparticles[J]. Iran Agricultural Research, 2018, 37: 75-82.
      [84]
      彭子艾. 基于磁性纳米载体的水稻性细胞基因组定向编辑技术研究[D]. 广州: 华南农业大学, 2020.
      [85]
      彭子艾, 李丹丹, 夏澳运, 等. 磁性纳米颗粒负载质粒 DNA 的研究[J]. 华南农业大学学报, 2020, 41(1): 78-82.
      [86]
      ABDULLAH R, COCKING E C, THOMPSON J A. Efficient plant regeneration from rice protoplasts through somatic embryogenesis[J]. Bio/Technology, 1986, 4(12): 1087-1090.
      [87]
      BITTENCOURT P A L, CSÁNYI Á, JENES B. Evaluation of different parameters and their influence on the PEG (polyethylene glycol) mediated gene transfer into rice (Oryza sativa L. ) protoplasts[J]. Cereal Research Communications, 1995, 23(4): 359-365.
      [88]
      PENG J, KONONOWICZ H, HODGES T K. Transgenic indica rice plants[J]. Theoretical and Applied Genetics, 1992, 83(6/7): 855-863.
      [89]
      UCHIMIYA H, FUSHIMI T, HASHIMOTO H, et al. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L. )[J]. Molecular and General Genetics, 1986, 204(2): 204-207. doi: 10.1007/BF00425499
      [90]
      ZHANG W, WU R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants[J]. Theoretical and Applied Genetics, 1988, 76(6): 835-840. doi: 10.1007/BF00273668
      [91]
      SUZUKI T, NONOMURA K I, TAKEDA N, et al. Application of enhanced lipofection to rice transformation[J]. Rice Genetics Newsletter, 2005, 20: 116.
      [92]
      ZHEN Z, HUGHES K, HUANG L, et al. Cationic liposome-mediated transformation of rice protoplasts[J]. Focus, 1990, 12: 41-44.
      [93]
      ZHU Z, HUGHES K W, HUANG L, et al. Expression of human α-interferon cDNA in transgenic rice plants[J]. Plant Cell, Tissue and Organ Culture, 1994, 36(2): 197-204. doi: 10.1007/BF00037720
      [94]
      LIU H, KAWABE A, MATSUNAGA S, et al. Application of the bio-active beads method in rice transformation[J]. Plant Biotechnology, 2004, 21(4): 303-306. doi: 10.5511/plantbiotechnology.21.303
      [95]
      MIZUKAMI A, NAGAMORI E, TAKAKURA Y, et al. Transformation of yeast using calcium alginate microbeads with surface-immobilized chromosomal DNA[J]. BioTechniques, 2003, 35(4): 734-740. doi: 10.2144/03354st03
      [96]
      WADA N, CARTAGENA J A, KHEMKLADNGOEN N, et al. Bioactive bead-mediated transformation of plants with large DNA fragments[M]//MERAN R L, JAN P. Transgenic Plant, New Jersey: Wiley, 2012: 91-106.
      [97]
      YOOKONGKAEW N, SRIVATANAKUL M, NARANGAJAVANA J. Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. indica)[J]. Journal of Plant Research, 2007, 120(2): 237-245. doi: 10.1007/s10265-006-0046-z
      [98]
      袁隆平. 超级杂交水稻育种栽培学[M]. 长沙: 湖南科学技术出版社, 2020: 329.
      [99]
      MACHO A P, ZIPFEL C. Plant PRRs and the activation of innate immune signaling[J]. Molecular Cell, 2014, 54(2): 263-272. doi: 10.1016/j.molcel.2014.03.028
      [100]
      CORNELIS G R. The type III secretion injectisome[J]. Nature Reviews Microbiology, 2006, 4(11): 811-825. doi: 10.1038/nrmicro1526
      [101]
      SHARMA S, SHARMA S, HIRABUCHI A, et al. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells[J]. The Plant Journal, 2013, 74(4): 701-712. doi: 10.1111/tpj.12148
      [102]
      RAMAN V, ROJAS C M, VASUDEVAN B, et al. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation[J]. Nature Communications, 2022, 13(1): 1-14. doi: 10.1038/s41467-022-30180-3
      [103]
      TODA E, KOISO N, TAKEBAYASHI A, et al. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice[J]. Nature Plants, 2019, 5(4): 363-368. doi: 10.1038/s41477-019-0386-z
      [104]
      XU X, LIU C, WANG Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment[J]. Advanced Drug Delivery Reviews, 2021, 176: 113891. doi: 10.1016/j.addr.2021.113891.
      [105]
      HAN Y, BROUGHTON S, LIU L, et al. Highly efficient and genotype-independent barley gene editing based on anther culture[J]. Plant Communications, 2021, 2(2): 100082. doi: 10.1016/j.xplc.2020.100082.
      [106]
      DEMIRER G S, SILVA T N, JACKSON C T, et al. Nanotechnology to advance CRISPR-Cas genetic engineering of plants[J]. Nature Nanotechnology, 2021, 16(3): 243-250. doi: 10.1038/s41565-021-00854-y
      [107]
      BEYER P, AL-BABILI S, YE X D, et al. Golden Rice: Introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency[J]. The Journal of Nutrition, 2002, 132(3): 506S-510S. doi: 10.1093/jn/132.3.506S
      [108]
      PENG J, LYZNIK L A, LEE L, et al. Co-transformation of indica rice protoplasts with gusA and neo genes[J]. Plant Cell Reports, 1990, 9(3): 168-172.
      [109]
      LU Y, WANG J, CHEN B, et al. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice[J]. Nature Plants, 2021, 7(11): 1445-1452. doi: 10.1038/s41477-021-01019-4
      [110]
      WANG Y, UNDERWOOD C J. Apomixis[J]. Current Biology, 2023, 33(8): R293-R295. doi: 10.1016/j.cub.2023.01.051
      [111]
      WEI X, LIU C, CHEN X, et al. Synthetic apomixis with normal hybrid rice seed production[J]. Molecular Plant, 2023, 16(3): 489-492. doi: 10.1016/j.molp.2023.01.005
      [112]
      WANG B, ZHU L, ZHAO B, et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding[J]. Molecular Plant, 2019, 12(4): 597-602. doi: 10.1016/j.molp.2019.03.006
    • Cited by

      Periodical cited type(6)

      1. 李致金,汤佳辉,闫金凤. 基于边缘计算的轻量化识别方法. 计算机工程. 2024(06): 287-295 .
      2. 缪睿,张永林. 基于改进小波模型的样条光顺算法. 机床与液压. 2024(17): 104-110 .
      3. 岳有军,霍晓东,王红君,赵辉. 苹果的动态识别与跟踪算法研究. 农机化研究. 2023(06): 41-46 .
      4. 张烨,肖启阳. 电子通信多径信号强干扰滤波抑制仿真. 计算机仿真. 2023(06): 245-249 .
      5. 陈裕凤,聂斌,詹国平,周冠芮,李欢,何雁. 近红外光谱的数据分析方法研究进展. 江西中医药大学学报. 2022(02): 120-124 .
      6. 熊灵,张卫平,李颖,韩慧玲,杨清跃,张安然. 文化育人视域下中医药文化融入大中小学思政教育一体化建设路径探究. 江西中医药大学学报. 2022(02): 97-100 .

      Other cited types(6)

    Catalog

      Article views (1531) PDF downloads (88) Cited by(12)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return