• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHENG Xianrun, ZHENG Peng, WANG Wenxiu, et al. Rice pest recognition based on multi-scale feature extraction depth residual network[J]. Journal of South China Agricultural University, 2023, 44(3): 438-446. DOI: 10.7671/j.issn.1001-411X.202206037
Citation: ZHENG Xianrun, ZHENG Peng, WANG Wenxiu, et al. Rice pest recognition based on multi-scale feature extraction depth residual network[J]. Journal of South China Agricultural University, 2023, 44(3): 438-446. DOI: 10.7671/j.issn.1001-411X.202206037

Rice pest recognition based on multi-scale feature extraction depth residual network

More Information
  • Received Date: June 23, 2022
  • Available Online: May 17, 2023
  • Objective 

    In the process of rice production, different control schemes need to be adopted for different pests. The accurate identification and classification of rice pests are the premise of formulating targeted control program.

    Method 

    A deep residual network of multi-scale feature extraction was proposed based on the Res2Net structure, which could extract pest characteristics more accurately and realize rice pest identification in complex natural background. This network adopted an improved residual structure, replaced the original convolutional kernel with hierarchical class residual connections, increased the sensing field of each network layer, and could extract multi-scale features at a more fine-grained degree.

    Result 

    The results showed that the model trained by this network could effectively identify rice pests in natural background. The average recognition accuracy of proposed model reached 92.023% on the self-built image dataset containing 22 kinds of the common rice pests, which was superior to the traditional ResNet, VGG and other networks.

    Conclusion 

    This network can be applied to the automatic monitoring system of rice insect status, which provides a reference for the realization of machine vision monitoring of rice pests.

  • [1]
    梁勇, 邱荣洲, 李志鹏, 等. 基于深度学习的水稻主要害虫识别方法[J/OL]. 农业机械学报, (2022-05-19)[2022-06-08]. http://kns.cnki.net/kcms/detail/11.1964.S.20220519.0919.002.html.
    [2]
    杨红云, 肖小梅, 黄琼, 等. 基于卷积神经网络和迁移学习的水稻害虫识别[J]. 激光与光电子学进展, 2022, 59(16): 333-340.
    [3]
    姚青, 谷嘉乐, 吕军, 等. 改进RetinaNet的水稻冠层害虫为害状自动检测模型[J]. 农业工程学报, 2020, 36(15): 182-188. doi: 10.11975/j.issn.1002-6819.2020.15.023
    [4]
    刘德营, 王家亮, 林相泽, 等. 基于卷积神经网络的白背飞虱识别方法[J]. 农业机械学报, 2018, 49(5): 51-56. doi: 10.6041/j.issn.1000-1298.2018.05.006
    [5]
    谢成军, 李瑞, 董伟, 等. 基于稀疏编码金字塔模型的农田害虫图像识别[J]. 农业工程学报, 2016, 32(17): 144-151. doi: 10.11975/j.issn.1002-6819.2016.17.020
    [6]
    XIAO D Q, FENG J Z, LIN T Y, et al. Classification and recognition scheme for vegetable pests based on the BOF-SVM model[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 190-196. doi: 10.25165/j.ijabe.20181103.3477
    [7]
    张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215. doi: 10.11975/j.issn.1002-6819.2019.19.025
    [8]
    程科, 孙玮, 高尚. 一种水稻田稻飞虱图像识别的混合算法[J]. 农机化研究, 2015, 37(11): 17-21. doi: 10.3969/j.issn.1003-188X.2015.11.004
    [9]
    鲍文霞, 吴德钊, 胡根生, 等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报, 2021, 37(16): 145-152. doi: 10.11975/j.issn.1002-6819.2021.16.018
    [10]
    LU X Y, YANG R, ZHOU J, et al. A hybrid model of ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease and pest[J]. Journal of King Saud University (Computer and Information Sciences), 2022, 34(5): 1755-1767. doi: 10.1016/j.jksuci.2022.03.006
    [11]
    LI H, LI S F, YU J G, et al. Plant disease and insect pest identification based on vision transformer[C]// SPIE. International Conference on Internet of Things and Machine Learning (IoTML 2021). Shanghai: SPIE , 2021: 194-201.
    [12]
    YUAN L, CHEN Y, WANG T, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet[C]//IEEE/CVF. IEEE/CVF International Conference on Computer Vision. Montreal : IEEE/CVF, 2021: 558-567.
    [13]
    HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition. CA: IEEE, 2016: 770-778.
    [14]
    GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. doi: 10.1109/TPAMI.2019.2938758
    [15]
    HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks [C]//IEEE/CVF. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019). Los Angeles: IEEE/CVF, 2019: 558-567.
    [16]
    IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//JMLR. Proceedings of the 32nd International Conference on Machine Learning. Lille: W&CP, 2015: 448-456.
    [17]
    LIN M, CHEN Q, YAN S. Network in network[J/OL]. Neural and Evolutionary Computing, (2013-10-16)[2022-04-26]. https://doi.org/10.48550/arXiv.1312.4400.
    [18]
    WU X P, ZHAN C, LAI Y K, et al. IP102: A large-scale benchmark dataset for insect pest recognition[C]// IEEE/CVF. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) . Los Angeles: IEEE/CVF, 2019: 8787-8796.
    [19]
    中国科技出版传媒股份有限公司. 中国生物志库[DB/OL]. (2008-08-28)[2022-04-26]. https://species.sciencereading.cn/biology/v/biologicalIndex/122.html.
    [20]
    彭旭, 饶元, 乔焰. 基于宽度卷积神经网络的异常农情数据检测方法[J]. 华南农业大学学报, 2022, 43(2): 113-121. doi: 10.7671/j.issn.1001-411X.202103050
    [21]
    PENG Z L, HUANG W , GU S Z , et al. Conformer: Local features coupling global representations for visual recognition[C]//IEEE/CVF. Proceedings of the IEEE/CVF International Conference on Computer Vision. Los Angeles: IEEE/CVF, 2021: 367-376.

Catalog

    Article views (516) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return