• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

稻渔综合种养研究进展与展望

章家恩, 韦生宝, 刘兴, 孙道琳, 石兆基

章家恩, 韦生宝, 刘兴, 等. 稻渔综合种养研究进展与展望[J]. 华南农业大学学报, 2024, 45(6): 812-824. DOI: 10.7671/j.issn.1001-411X.202409007
引用本文: 章家恩, 韦生宝, 刘兴, 等. 稻渔综合种养研究进展与展望[J]. 华南农业大学学报, 2024, 45(6): 812-824. DOI: 10.7671/j.issn.1001-411X.202409007
ZHANG Jiaen, WEI Shengbao, LIU Xing, et al. Research progress and prospect of integrated rice-fish coculture[J]. Journal of South China Agricultural University, 2024, 45(6): 812-824. DOI: 10.7671/j.issn.1001-411X.202409007
Citation: ZHANG Jiaen, WEI Shengbao, LIU Xing, et al. Research progress and prospect of integrated rice-fish coculture[J]. Journal of South China Agricultural University, 2024, 45(6): 812-824. DOI: 10.7671/j.issn.1001-411X.202409007

稻渔综合种养研究进展与展望

基金项目: 广东省重点领域研发计划(2021B0202030002);广东省现代农业产业技术体系创新团队建设项目(2022KJ105)
详细信息
    作者简介:

    章家恩,教授,博士,主要从事农业生态、土壤生态和生物入侵等研究,E-mail: jeanzh@scau.edu.cn

  • 中图分类号: S964.2

Research progress and prospect of integrated rice-fish coculture

More Information
    Author Bio:

    ZHANG Jiaen:   章家恩,博士,华南农业大学二级教授,博士生导师。主要从事农业生态学、土壤生态学和入侵生态学等方面的科研和教学工作,荣获“全国优秀教师”称号,是广东省“千百十工程”国家级培养对象、广东省珠江学者特聘教授、广东特支计划领军人才、广东省现代农业产业技术体系岗位专家。兼任中国生态学学会常务理事、中国生态学学会农业生态专业委员会主任,中国土壤学会土壤生态专业委员会委员、广东省生态学会副理事长、广东省可持续发展协会副理事长、广东省未来预测研究会副理事长,《生态科学》编委会副主任以及《中国生态农业学报》《华南农业大学学报》等杂志编委。近年来,共承担国家(省、部)级科研项目50多项,已发表学术论文300多篇,主编教材和专著10多部,参编10多部;申报发明专利和实用新型专利60多项,其中,已授权40多项;获省部级科研与教学成果奖励10项

  • 摘要:

    稻渔综合种养是我国当前正在鼓励、支持和大力推广应用的绿色低碳农业发展模式,生产实践面积日益扩大,相关的理论与实践研究成果不断增加,新技术、新模式、新情况和新问题不断涌现。本文对我国稻渔综合种养的发展现状、重要研究领域及相关进展进行了综述,分析了稻渔综合种养生产亟待解决的关键问题,即科学化与精准化问题、标准化与套餐化问题、轻简化与智慧化问题、多功能化与产业化问题。并对稻渔综合种养研究和产业化发展进行了展望,具体包括:1)稻渔综合种养技术模式的定位化、网络化和长期化试验观测研究;2)稻渔综合种养关键/配套/接口技术创新及其系统集成研究;3)稻渔综合种养技术的标准化、智慧化与产业化研究;4)稻渔综合种养增汇减排与绿色低碳发展研究。为更好地推进我国稻渔综合种养的相关研究以及稻田生态产业的高质量发展提供参考。

    Abstract:

    Integrated rice-fish coculture is a green and low-carbon agricultural development model which is currently encouraged, supported, vigorously promoted and applied with an expanding production practice area in China. In the meantime, there are increasingly relevant theoretical and practical research findings, along with some new emerging technologies, modes, situations and issues. This paper reviewed the development status, key research fields and related progress of integrated rice-fish coculture in China, and analyzed the key issues and development directions to be solved urgently for scientification & precision, standardization & package, smartization & simplification and multifunction & industrialization of integrated rice-fish coculture at present. The prospects for the future research and industrialization of integrated rice-fish coculture were put forward in four aspects including the long-term and networking field observation researches on technologies and models of the integrated rice-fish coculture, the innovation and integration of key/supporting/interfacing technologies and optimal coculture systems, the standardization, smartization and industrialization of technologies for integrated rice-fish coculture, and the carbon/nitrogen sink enhancement, emission reduction and green and low-carbon development. This paper could provide references for better promoting relevant research of integrated rice-fish culture as well as the high-quality development of paddy eco-industry in China.

  • 普通大蓟马Megalurothrips usitatus又名豆大蓟马、豆花蓟马,隶属于缨翅目蓟马科大蓟马属,主要分布于澳大利亚、马来西亚、斯里兰卡、菲律宾、斐济、印度、日本等[1-3],在我国海南、台湾、广东、广西、湖北、贵州、陕西等地也均有发生为害[4-5]。据报道,该虫有28种寄主,其中16种为豆科植物,目前它已成为危害华南地区豆科作物的主要害虫[6-9],田间调查和室内试验均表明豇豆为其嗜好寄主[10-11]。普通大蓟马主要以锉吸式口器取食豇豆幼嫩组织的汁液,可造成叶片皱缩、生长点萎缩、豆荚痂疤等,严重影响豇豆品质[12-13]。此外,该虫体积小、发生量大、隐秘性强,大部分时间都躲在花中取食,从豇豆苗期至采收期均可为害[14-15],以上特点均增加了农户的防治难度。当其为害严重时,农户只能增加施药频率和施药量,这也导致该虫对多种常用化学农药产生了严重的抗药性[16-17]

    目前关于普通大蓟马的研究主要集中在生物学特性[18]及综合防治技术[19-20]等层面,随着抗药性的不断发展与研究的不断深入,从分子层面解析普通大蓟马的抗药性机制和寄主选择机制等以寻求新型绿色防控方法势在必行,室内种群的大规模饲养是展开这些研究的基础。化蛹基质作为影响昆虫种群规模的关键因子,韩云等[21]曾指出普通大蓟马在含水量(w)为15%的砂壤土中羽化率显著高于砂土、壤土和黏土,但不适用于室内大规模饲养,因为实际应用中,存在土壤类型无法明确区分、配制砂壤土会增加人工饲养的工作量等问题。土壤以外的其他基质对普通大蓟马化蛹的适合度鲜见研究报道。

    本研究以普通大蓟马为试验对象,室内观测其在沙子、蛭石和厨房用纸3种基质及无基质条件下的羽化规律,分析该虫对不同化蛹基质的适合度,以期为普通大蓟马的室内大规模饲养提供基础资料,为该虫的综合治理提供理论依据。

    普通大蓟马于2017年采自广东省广州市增城区朱村豇豆田,采回后在RXZ-500C型智能人工气候箱(宁波江南仪器厂)内用豇豆豆荚饲养,饲养条件为温度(26±6) ℃,光照周期12 h光∶12 h暗,相对湿度(70±5)%。室内饲养多代后,选取发育一致的老熟2龄若虫(以体色变为橙红色为标准)进行室内试验。

    供试基质包括沙子、蛭石、锯末和厨房用纸,并以无基质作为空白对照。试验前将沙子、蛭石和锯末置于DHG-9140型电热恒温鼓风干燥箱(上海精宏实验设备有限公司)中105 ℃恒温烘烤6 h备用。

    首先称取过筛烘干后的沙子50 g 3组,分别加入2.5、3.5和4.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为5%、7%和9%的沙子化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入10.0、12.5和15.0 mL蒸馏水,充分混匀,配制成含水量(w)分别为20%、25%和30%的蛭石化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入12.5、15.0和17.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为25%、30%和35%的锯末化蛹基质。将以上基质分别转移至350 mL玻璃组培瓶内,基质深度均为5 cm,将厨房用纸对折成合适大小后平铺在组培瓶底部作为基质。在所有基质上放置纱网,再加入1根新鲜的豇豆豆荚(长度约4~5 cm),分别接入50头普通大蓟马老熟2龄若虫,用250目纱布封口后置于人工气候箱中饲养,每日观察并记录成虫羽化数量。每个处理设6次重复。设置不加入任何化蛹基质的空白对照。

    含水量的测定方法按以下公式[22]进行:

    含水量=实际含水质量/烘干后基质质量×100%。

    运用SPSS 24.0软件进行试验数据处理分析,不同基质及含水量对普通大蓟马羽化率、蛹历期和性比(雄性∶雌性)的影响采用单因素方差分析,并运用Duncan’s法检验差异显著性。

    普通大蓟马在不同基质中的羽化率、蛹历期和性比具有显著差异(图1)。由图1A可知,普通大蓟马在厨房用纸中的羽化率显著高于其他基质,为54.33%,其次为含水量5%(w)的沙子,羽化率为44.67%;锯末最不适宜于普通大蓟马羽化,在含水量(w)为25%、30%、35%的锯末中普通大蓟马的羽化率分别为10.33%、5.33%、16.67%,显著低于空白对照与其他基质。

    图  1  不同基质对普通大蓟马羽化率、发育历期和性比(雄性∶雌性)的影响
    1~3分别为含水量(w)为5%、7%和1%的沙子,4~6分别为含水量(w)为20%、25%和30%的蛭石,7~9分别为含水量(w)为25%、30%和35%锯末,10:厨房用纸,11:无基质;各图中的不同小写字母表示差异显著(P<0.05,Duncan’s法)
    Figure  1.  Effects of different substrates on eclosion rate, pupa developmental period and male-female ratio of Megalurothrips usitatus
    1: Sand with 5% moisture, 2: Sand with 7% moisture, 3: Sand with 10% moisture, 4: Vermiculite with 20% moisture, 5: Vermiculite with 25% moisture, 6: Vermiculite with 30% moisture, 7: Sawdust with 25% moisture, 8: Sawdust with 30% moisture, 9: Sawdust with 35% moisture, 10: Kitchen paper, 11: No substrate; Different lowercase leters in the same figure indicated significant difference among different substrate (P<0.05, Duncan’s method)

    图1B可知,普通大蓟马在含水量5%(w)的沙子中蛹的发育历期最短,为5.29 d,其次为含水量7%(w)的沙子,为6.01 d,在其他基质中的蛹期则无显著差异,在6.14~7.16 d。

    图1C可知,普通大蓟马在含水量30%(w)的蛭石中性比最高,为0.60,含水量10%(w)的沙子和30%(w)的蛭石性比相对较低,分别为0.12和0.06,在其他基质中性比无显著差异。

    表1数据可知,沙子含水量(w)为5%时普通大蓟马羽化最早,始于第2天;其次为蛭石,羽化始于第4天,其他条件下羽化均始于第3天;以锯末为基质时羽化最晚,始于第5天。沙子含水量(w)为5%和厨房用纸条件下,羽化高峰出现在第5天,羽化率分别为21%和22.67%;次高峰在第6天,羽化率分别为14.33%和21%。沙子含水量(w)为9%、锯末以及空白对照下羽化高峰出现在第7天,其他条件下羽化高峰均出现在第6天。不同基质类型及含水量条件下,普通大蓟马的羽化均结束于第8天或第9天,与不同基质培养条件下普通大蓟马蛹期之间的差异相对应。

    表  1  不同基质对普通大蓟马逐日羽化率的影响1)
    Table  1.  Effects of differents substrates on daily eclosion rate of Megalurothrips usitatus %
    t/d 沙子含水量(w) Water content in sand 蛭石含水量(w) Water content in vermiculite
    5% 7% 9% 20% 25% 30%
    1 0 0 0 0 0 0
    2 1.67±0.42c 0 0 0 0 0
    3 1.00±1.68c 0 0 0 0 0
    4 1.33±0.67c 5.33±0.33c 0.33±0.33b 0 0 0
    5 21.00±3.82a 5.33±2.17b 2.67±1.91b 3.00±2.30bc 10.33±3.48ab 0.33±0.33b
    6 14.33±4.66b 17.33±1.76a 2.67±1.91b 11.67±2.09a 14.67±3.33a 7.67±2.22a
    7 2.33±0.80c 5.00±0.85b 8.67±1.84a 6.33±2.28b 7.67±1.74bc 6.67±1.52a
    8 0.67±0.42c 0.67±0.67c 0.67±0.42b 4.00±1.35bc 4.00±1.37cd 1.67±0.94b
    9 0 0 0.33±0.33b 0.67±0.42b 0 0.67±0.42b
    10 0 0 0 0 0 0
    下载: 导出CSV 
    | 显示表格

    化蛹基质的类型对普通大蓟马化蛹具有一定影响,本研究发现锯末和蛭石不适宜于普通大蓟马化蛹,锯末和蛭石不同含水量条件下大蓟马的羽化率都显著低于空白对照。有研究指出土壤中砂土含量低于30%时,蓟马若虫不能化蛹[23],蓟马在砂壤土中的羽化率也显著高于砂土、黏土、壤土等单一土壤[21]

    化蛹基质的含水量对普通大蓟马化蛹具有显著影响,本研究发现当沙子含水量(w)为5%时,羽化率仅次于厨房用纸,高达44.67%,与孟国玲等[23]关于豆带蓟马Taenithripsglycines在含水量(w)为5.7%时羽化率最高(43.63%)的报道相对一致。韩云等[21]研究发现普通大蓟马在含水量(w)为15%的砂壤土中羽化率最高,为52.08%,而土壤含水量(w)5%时羽化率仅为6.67%。这与本研究结果不符,究其原因可能是不同类型的基质吸水力与保水力不同,导致在相同的绝对含水量下湿度有差异。此外,有研究曾指出高含水量不利于蓟马化蛹[24],这与本研究结果相一致,沙子含水量(w)5%时的羽化率显著高于含水量(w)7%和10%。

    在本研究中,成虫性比普遍低于1∶1,含水量(w)30%的蛭石羽化性比最高,为0.6,含水量(w)30%锯末最低,为0.06,其他处理的性比无显著差异,为0.12~0.48。张念台[8]和谭柯[24]在田间调查的结果也显示其成虫性比低于1∶1,后代总是偏于雌性,谭柯[24]则表示后代偏雌性可能是蓟马暴发的原因之一。这与本研究结果相一致,后代偏于雌性。

    本研究发现普通大蓟马在厨房用纸中的羽化率最高,蛹发育历期与其他基质相比无明显差异,且以厨房用纸为化蛹基质时,可以清楚地观察到普通大蓟马蛹期的形态特征变化,可以随时根据试验需求收集不同时期的若虫或成虫。虽然沙子含水量(w)5%时蛹发育历期最短且羽化率也较高,但蓟马一旦入土化蛹便无法继续观察形态或收集虫体。因此,本试验条件下,厨房用纸是最适合室内普通大蓟马大量饲养的化蛹基质。

  • 图  1   2015—2023年中国主要省(区、市)及水稻种植区的稻渔综合种养面积和水产品产量的时空变化

    Figure  1.   The spatio-temporal changes of area and production of integrated rice-fish coculture in the provinces and main rice planting regions in China from 2015 to 2023

    图  2   稻渔综合种养系统的结构与功能示意图

    Figure  2.   Schematic structure and function of integrated rice-fish coculture system

    图  3   稻渔综合种养系统的联动过程与协同调控研究框架

    Figure  3.   Research framework for linkage process and coordinated regulation of integrated rice-fish coculture system

    图  4   稻渔综合种养轻简化与智慧化发展方向

    Figure  4.   Development of rice-fish integrated coculture to light & simple and smart cultivation direction

    表  1   1982—2023年我国稻渔综合种养面积和水产品产量

    Table  1   Area and production of integrated rice-fish coculture in China from 1982 to 2023

    年份面积/万hm2产量/万t年份面积/万hm2产量/万t
    198233.111.722003161.95101.44
    198338.804.302004163.61104.02
    198446.116.882005155.59101.45
    198555.858.612006145.17106.60
    198667.2310.332007150.89116.05
    198770.5310.332008140.47116.06
    198868.1512.052009134.48120.36
    198970.2312.922010127.67122.08
    199071.1012.922011126.52123.80
    199171.1714.642012136.65133.25
    199273.6517.232013151.65143.56
    199378.1519.812014149.29147.86
    199483.0522.392015150.16155.82
    199596.0332.702016148.40162.84
    1996110.6141.292017168.27194.75
    1997125.6149.022018202.48233.31
    1998137.0157.612019234.66291.33
    1999149.9967.072020246.01317.06
    2000154.0977.382021264.41355.69
    2001156.5691.122022286.37387.22
    2002162.28104.872023299.36416.65
    下载: 导出CSV
  • [1]

    FAO. Food and agriculture data[DB/OL]. (2023-12-23)[2024-08-08]. https://www.fao.org/faostat/en/#home.

    [2]

    VAN ITTERSUM M K. Crop yields and global food security: Will yield increase continue to feed the world?[J]. European Review of Agricultural Economics, 2016, 43(1): 191-192. doi: 10.1093/erae/jbv034

    [3]

    CHEN W F, XU Z J, TANG L. 20 years' development of super rice in China: The 20th anniversary of the super rice in China[J]. Journal of Integrative Agriculture, 2017, 16(5): 981-983.

    [4]

    CASSMAN K G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5952-5959.

    [5]

    SWANSON B E. Global review of good agricultural extension and advisory service practices[M]. Rome: FAO , 2008.

    [6]

    TIMMER C P, BLOCK S, DAWE D. Long-run dynamics of rice consumption, 1960−2050[C]//PANDEY D, BYERLEE D, DAWE D, et al. Rice in the global economy: Strategic research and policy issues for food security. Philippines: IRRI, 2010: 139-174.

    [7]

    GRUBE A, DONALDSON D, KIELY T L, et al. Pesticides industry sales and usage 2006 and 2007 market estimates[R]. Washington, D C: Office of Pesticide Programs, Office of Chemical Safety and Pollution Prevention, U. S. Environmental Protection Agency, 2011.

    [8]

    HEFFER P, GRUERE A, ROBERTS T. Assessment of fertilizer use by crop at the global level 2014-2014/15[R]. Paris: International Fertilizer Association (IFA) and International Plant Nutrition Institute (IPNI), 2017.

    [9]

    GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. doi: 10.1126/science.1182570

    [10]

    FOLEY J A, RAMANKUTTY N, BRAUMAN K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342. doi: 10.1038/nature10452

    [11]

    ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. doi: 10.1038/nature15743

    [12]

    SOLOMON S. Climate change 2007: The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007

    [13]

    LINQUIST B, VAN GROENIGEN K J, ADVIENTO-BORBE M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2012, 18(1): 194-209. doi: 10.1111/j.1365-2486.2011.02502.x

    [14] 李俊杰, 李建平. 水稻生产成本效益国际比较及中国发展前景[J]. 中国稻米, 2021, 27(4): 22-30.
    [15]

    LI Y F, WU T Y, WANG S D, et al. Developing integrated rice-animal farming based on climate and farmers choices[J]. Agricultural Systems, 2023, 204: 103554. doi: 10.1016/j.agsy.2022.103554

    [16]

    CUI J, LIU H, WANG H, et al. Rice-animal co-culture systems benefit global sustainable intensification[J]. Earths Future, 2023, 11(2): e2022EF002984. doi: 10.1029/2022EF002984

    [17]

    HALWART M, GUPTA M V. Culture of fish in rice fields[M]. Penang: FAO and the World Fish Center, 2004.

    [18]

    DE SOUSA A M B, SANTOS R R S, MORAES F H R, et al. Exploring the potential for sustainable weed control with integrated rice-fish culture for smallholder irrigated rice agriculture in the Maranhão Lowlands of Amazonia[J]. Renewable Agriculture and Food Systems, 2012, 27(2): 107-114. doi: 10.1017/S174217051100024X

    [19]

    FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119-128.

    [20]

    CLAVERO M, LÓPEZ V, FRANCH N, et al. Use of seasonally flooded rice fields by fish and crayfish in a Mediterranean wetland[J]. Agriculture Ecosystems & Environment, 2015, 213: 39-46.

    [21]

    DARTEY P K A, BAM R K, OFORI J N. Preliminary studies in rice-fish culture in a rainfed lowland ecology in Ghana[J]. Ghana Journal of Agricultural Science, 1999, 32(1): 123.

    [22]

    NNAJI J C, MADU C T, RAJI A. Profitability of rice-fish farming in Bida, North Central Nigeria[J]. Journal of Fisheries and Aquatic Science, 2013, 8(1): 148-153.

    [23] 李荣福, 杜雪地, 徐忠香, 等. 中国稻田渔业起源与历史分析[J]. 中国渔业经济, 2023, 41(3): 113-126.
    [24] 中国稻渔综合种养产业发展报告(2018)[J]. 中国水产, 2019(1): 20-27.
    [25] 农业农村部. 农业农村部关于推进稻渔综合种养产业高质量发展的指导意见[J]. 河南水产, 2022(6): 38-39.
    [26] 中国稻渔综合种养产业发展报告(2024)全文发布[J]. 中国水产, 2024(8): 12-17.
    [27] 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26.
    [28]

    OEHME M, FREI M, RAZZAK M A, et al. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh[J]. Nutrient Cycling in Agroecosystems, 2007, 79(2): 181-191. doi: 10.1007/s10705-007-9106-6

    [29]

    YU H Y, ZHANG X C, SHEN W Y, et al. A meta-analysis of ecological functions and economic benefits of co-culture models in paddy fields[J]. Agriculture Ecosystems & Environment, 2023, 341: 108195.

    [30] 中国小龙虾产业发展报告(2024)[J]. 中国水产, 2024(7): 14-20.
    [31] 于秀娟, 郝向举, 杨霖坤, 等. 中国小龙虾产业发展报告(2023)[J]. 中国水产, 2023(7): 26-31.
    [32] 倪达书, 汪建国. 稻鱼共生生态系统中物质循环及经济效益[J]. 水产科技情报, 1985(6): 1-4.
    [33]

    JI Z J, ZHAO L F, ZHANG T J, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J]. Journal of Plant Ecology, 2023, 16(6): rtad014. doi: 10.1093/jpe/rtad014

    [34]

    XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387.

    [35]

    LIU J F, ZHANG Q, WANG Q Y, et al. Gross ecosystem product accounting of a globally important agricultural heritage system: The Longxian rice-fish symbiotic system[J]. Sustainability, 2023, 15(13): 10407. doi: 10.3390/su151310407

    [36] 钟波. 稻−鳅生态系统能值分析[J]. 中国稻米, 2013, 19(3): 48-50.
    [37]

    DONG S P, GAO Y F, GAO Y P, et al. Evaluation of the trophic structure and energy flow of a rice-crayfish integrated farming ecosystem based on the Ecopath model[J]. Aquaculture, 2021, 539: 736626. doi: 10.1016/j.aquaculture.2021.736626

    [38] 甄若宏, 王强盛, 张卫建, 等. 稻鸭共作对水稻条纹叶枯病发生规律的影响[J]. 生态学报, 2006, 26(9): 3060-3065.
    [39] 张亚, 廖晓兰, 刘薇, 等. 鸭粪提取物对水稻纹枯病菌的影响及其有效成分分析[J]. 中国生态农业学报, 2010, 18(1): 102-105.
    [40] 陈欣, 唐建军. 农业系统中生物多样性利用的研究现状与未来思考[J]. 中国生态农业学报, 2013, 21(1): 54-60.
    [41] 曹志强, 梁知洁, 赵艺欣, 等. 北方稻田养鱼的共生效应研究[J]. 应用生态学报, 2001, 12(3): 405-408.
    [42] 谢坚, 刘领, 陈欣, 等. 传统稻鱼系统病虫草害控制[J]. 科技通报, 2009, 25(6): 801-805.
    [43] 陈文辉, 彭亮, 刘莹莹, 等. 江汉平原稻虾综合种养模式经济效益和生态效益分析[J]. 湖北农业科学, 2019, 58(14): 160-166.
    [44] 黄毅斌, 翁伯奇, 唐建阳, 等. 稻−萍−鱼体系对稻田土壤环境的影响[J]. 中国生态农业学报, 2001, 9(1): 74-76.
    [45] 李锡勇, 黄婕. 水稻免耕养鱼田稻飞虱消长观察试验初报[J]. 广西农学报, 2005, 20(6): 7-9.
    [46] 吴敏芳, 郭梁, 张剑, 等. 稻鱼共作对稻纵卷叶螟和水稻生长的影响[J]. 浙江农业科学, 2016, 57(3): 446-449.
    [47] 魏守辉, 强胜, 马波, 等. 稻鸭共作及其它控草措施对稻田杂草群落的影响[J]. 应用生态学报, 2005, 16(6): 1067-1071.
    [48] 张峥, 卜德孝, 强胜. 不同稻田综合种养模式下杂草长期控制效果的调查[J]. 植物保护学报, 2022, 49(2): 693-704.
    [49]

    SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7(1): 2856. doi: 10.1038/s41598-017-02984-7

    [50]

    NAYAK P K, NAYAK A K, PANDA B B, et al. Ecological mechanism and diversity in rice based integrated farming system[J]. Ecological Indicators, 2018, 91: 359-375. doi: 10.1016/j.ecolind.2018.04.025

    [51]

    CHAKRABORTY, CHAKRABORTY. Effect of dietary protein level on excretion of ammonia in Indian major carp, Labeo rohita, fingerlings[J]. Aquaculture Nutrition, 1998, 4(1): 47-51.

    [52]

    LAZZARI R, BALDISSEROTTO B. Nitrogen and phosphorus waste in fish farming[J]. Boletim Do Instituto De Pesca, 2008, 34(4): 591-600.

    [53]

    LI P, WU G G, LI Y J, et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability[J]. Geoderma, 2022, 413: 115745. doi: 10.1016/j.geoderma.2022.115745

    [54]

    REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture Ecosystems & Environment, 2023, 348: 108399.

    [55] 钟松雄, 尹光彩, 陈志良, 等. 水稻土中砷的环境化学行为及铁对砷形态影响研究进展[J]. 土壤, 2016, 48(5): 854-862.
    [56]

    YUAN P L, WANG J P, LI C F, et al. Long-term rice-crayfish farming aggravates soil gleying and induced changes of soil iron morphology[J]. Soil Use and Management, 2022, 38(1): 757-770. doi: 10.1111/sum.12688

    [57]

    ZHANG Z, DU L S, XIAO Z Y, et al. Rice-crayfish farming increases soil organic carbon[J]. Agriculture Ecosystems & Environment, 2022, 329: 107857.

    [58]

    XU G C, LIU X, WANG Q S, et al. Integrated rice-duck farming mitigates the global warming potential in rice season[J]. Science of the Total Environment, 2017, 575: 58-66. doi: 10.1016/j.scitotenv.2016.09.233

    [59]

    CHEN Y T, LIU C H, CHEN J, et al. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment[J]. Journal of Cleaner Production, 2021, 310: 127493. doi: 10.1016/j.jclepro.2021.127493

    [60]

    FANG K K, GAO H, SHA Z M, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China[J]. Agriculture Ecosystems & Environment, 2021, 308: 107235.

    [61]

    FANG K K, DAI W, CHEN H Y, et al. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123. doi: 10.1016/j.scitotenv.2021.147123

    [62]

    FANG K K, CHEN H Y, DAI W, et al. Microbe-mediated reduction of methane emission in rice-frog crop ecosystem[J]. Applied Soil Ecology, 2022, 174.

    [63]

    GUO L J, LIN W, CAO C G, et al. Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season[J]. Science of the Total Environment, 2023, 867: 161520. doi: 10.1016/j.scitotenv.2023.161520

    [64]

    DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1): 228-237.

    [65] 欧茜, 熊瑞, 周文涛, 等. 稻鱼共生养鱼密度对稻田甲烷排放的影响[J]. 农业环境科学学报, 2024, 43(9): 1-12.
    [66] 张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307.
    [67] 刘许辉, 张红禄, 贾青云, 等. 桂北高寒山区稻田生态种养下水稻及鱼生长试验[J]. 农业与技术, 2022, 42(16): 18-21.
    [68] 王奇, 李妹娟, 章家恩, 等. 稻鱼共作对水稻叶绿素荧光特征及产量的影响[J]. 作物杂志, 2021(6): 145-151.
    [69] 李艳蔷, 晏群. 稻鳅共生种养模式试验研究[J]. 中国农业资源与区划, 2018, 39(5): 54-60.
    [70] 周江伟, 刘贵斌, 吴涛, 等. 不同种养模式对水稻根系生长和产量性状的影响[J]. 江苏农业科学, 2018, 46(13): 55-58.
    [71] 郭天荣, 刘瑞琪, 曾晴, 等. 稻蛙种养对水稻功能叶片和籽粒养分含量及产量构成的影响[J]. 分子植物育种, 2022, 20(15): 5205-5212.
    [72] 姚义, 张明伟, 陈京都, 等. 稻虾共作模式下不同栽插密度对丰优香占群体结构及产量的影响[J]. 江苏农业科学, 2021, 49(3): 66-71.
    [73] 全国明, 章家恩, 杨军, 等. 稻鸭共作对稻米品质的影响[J]. 生态学报, 2008, 28(7): 3475-3483.
    [74] 甄若宏, 王强盛, 何加骏, 等. 稻鸭共作对水稻产量和品质的影响[J]. 农业现代化研究, 2008, 29(5): 615-617.
    [75] 陈灿, 黄璜, 郑华斌, 等. 稻田不同生态种养模式对稻米品质的影响[J]. 中国稻米, 2015, 21(2): 17-19.
    [76] 王强盛, 黄丕生, 甄若宏, 等. 稻鸭共作对稻田营养生态及稻米品质的影响[J]. 应用生态学报, 2004, 15(4): 639-645.
    [77] 安辉, 刘鸣达, 王厚鑫, 等. 不同稻蟹生产模式对稻蟹产量和稻米品质的影响[J]. 核农学报, 2012, 26(3): 581-586.
    [78] 陈灿, 郑华斌, 黄璜, 等. 稻田养鳅模式对稻米品质和经济效益的影响[J]. 中国稻米, 2015, 21(4): 124-127.
    [79] 纪力, 邵文奇, 陈富平, 等. 连年规模稻鸭共养对稻田土壤性状、稻米产量及品质的影响[J]. 中国农学通报, 2021, 37(13): 1-7.
    [80] 张印, 余政军, 王忍, 等. 鸭品种对稻鸭共生系统土壤理化性质、水稻产量及经济效益的影响[J]. 河南农业科学, 2021, 50(12): 23-31.
    [81] 董明辉, 顾俊荣, 李锦斌, 等. 稻虾生态种养和机插密度对优良食味粳稻产量与品质的影响[J]. 中国农学通报, 2021, 37(17): 1-12.
    [82] 彭翔, 戴林秀, 李京咏, 等. 稻田综合种养对长江中下游地区水稻产量和稻米品质影响的文献研究[J]. 中国稻米, 2022, 28(4): 55-60.
    [83] 王龙根, 张家宏, 谢成林, 等. 扬州市生态稻田养殖鱼产品农药残留分析研究[J]. 现代农业科技, 2016(7): 293.
    [84] 王冬武, 何志刚, 易继华, 等. 镉污染稻田“虾稻轮作−稻鱼共生”安全利用模式试验总结[J]. 当代水产, 2023, 48(3): 64-66.
    [85]

    WANG Q, LI M J, ZHANG J E, et al. Suitable stocking density of fish in paddy field contributes positively to 2-acetyl-1-pyrroline synthesis in grain and improves rice quality[J]. Journal of the Science of Food and Agriculture, 2023, 103(10): 5126-5137. doi: 10.1002/jsfa.12597

    [86]

    XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917-1925. doi: 10.1111/gcb.13455

    [87]

    BASHIR M A, WANG H Y, SUN W T, et al. The implementation of rice-crab co-culture system to ensure cleaner rice and farm production[J]. Journal of Cleaner Production, 2021, 316: 128284. doi: 10.1016/j.jclepro.2021.128284

    [88]

    DU F L, HUA L L, ZHAI L M, et al. Rice-crayfish pattern in irrigation-drainage unit increased N runoff losses and facilitated N enrichment in ditches[J]. Science of the Total Environment, 2022, 848: 157721. doi: 10.1016/j.scitotenv.2022.157721

    [89] 李双双, 刘卫柏, 蒋健. 农业机械化可以解决农业劳动力短缺吗?[J]. 中国农机化学报, 2024, 45(7): 316-322.
    [90] 稻渔综合种养技术规范(通则)[J]. 中国水产, 2018(5): 81-83.
    [91] “十三五”中国稻渔综合种养产业发展报告[J]. 中国水产, 2022(1): 43-52.
  • 期刊类型引用(2)

    1. 胡溧,胡远生,谭征宇,王华伟,王博,王佳. 汽车冷却风扇噪声主动控制仿真及声品质评价. 噪声与振动控制. 2024(02): 202-207 . 百度学术
    2. 李瑞,窦青青,魏志明,陈刚,李青龙,孙永佳,孙宜田. 农业机械振动噪声控制技术研究现状与展望. 农业装备与车辆工程. 2024(09): 1-8+18 . 百度学术

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数:  1380
  • HTML全文浏览量:  156
  • PDF下载量:  219
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-09-08
  • 网络出版日期:  2024-10-16
  • 发布日期:  2024-10-22
  • 刊出日期:  2024-11-09

目录

/

返回文章
返回