-
摘要:
稻渔综合种养是我国当前正在鼓励、支持和大力推广应用的绿色低碳农业发展模式,生产实践面积日益扩大,相关的理论与实践研究成果不断增加,新技术、新模式、新情况和新问题不断涌现。本文对我国稻渔综合种养的发展现状、重要研究领域及相关进展进行了综述,分析了稻渔综合种养生产亟待解决的关键问题,即科学化与精准化问题、标准化与套餐化问题、轻简化与智慧化问题、多功能化与产业化问题。并对稻渔综合种养研究和产业化发展进行了展望,具体包括:1)稻渔综合种养技术模式的定位化、网络化和长期化试验观测研究;2)稻渔综合种养关键/配套/接口技术创新及其系统集成研究;3)稻渔综合种养技术的标准化、智慧化与产业化研究;4)稻渔综合种养增汇减排与绿色低碳发展研究。为更好地推进我国稻渔综合种养的相关研究以及稻田生态产业的高质量发展提供参考。
Abstract:Integrated rice-fish coculture is a green and low-carbon agricultural development model which is currently encouraged, supported, vigorously promoted and applied with an expanding production practice area in China. In the meantime, there are increasingly relevant theoretical and practical research findings, along with some new emerging technologies, modes, situations and issues. This paper reviewed the development status, key research fields and related progress of integrated rice-fish coculture in China, and analyzed the key issues and development directions to be solved urgently for scientification & precision, standardization & package, smartization & simplification and multifunction & industrialization of integrated rice-fish coculture at present. The prospects for the future research and industrialization of integrated rice-fish coculture were put forward in four aspects including the long-term and networking field observation researches on technologies and models of the integrated rice-fish coculture, the innovation and integration of key/supporting/interfacing technologies and optimal coculture systems, the standardization, smartization and industrialization of technologies for integrated rice-fish coculture, and the carbon/nitrogen sink enhancement, emission reduction and green and low-carbon development. This paper could provide references for better promoting relevant research of integrated rice-fish culture as well as the high-quality development of paddy eco-industry in China.
-
褐飞虱Nilaparvata lugens是水稻的重要害虫。培育和利用抗虫品种防控褐飞虱既经济又有效,能将害虫种群数量控制在较低水平[1-2]。近年来,不少当地育成的主栽水稻品种被鉴定出对褐飞虱有抗性或耐受性,如‘广两优106’[3]、‘广两优476’[3]、‘宁粳1号’[4]、‘淮稻9号’[4]、‘良丰优339’[5]、‘丰两优4号’[6]、‘甬优6号’[7]、‘丰优54’[7]、‘Minghui63’[8]、‘皖稻51’[9]、‘明陵两优268’[10]等水稻品种,这些水稻品种不仅产量高,且在田间对褐飞虱表现出较强抗性。随着生活水平的提高,人们对农产品品质的要求越来越高。生产应用的水稻品种不但要求产量高、抗性佳,对米质也有了更高的要求。2019年,广西壮族自治区农业科学院水稻研究所育成的高档常规稻品种‘桂育11号’在第2届全国优质稻品种食味品质鉴评中获得籼稻组金奖[11-12],极大满足了高品质稻米的市场需求,但鲜见该品种抗褐飞虱的研究报道。本文对‘桂育11号’进行褐飞虱抗性的系统评价,明确其抗性,以期为褐飞虱绿色防控提供技术支撑。
1. 材料与方法
1.1 材料
试验品种‘桂育11号’由广西壮族自治区农业科学院水稻研究所提供;对照‘柳沙油占202’为广西壮族自治区感虫品种,于市面购买;‘Rathu Heenati’含抗虫基因Bph3,‘Taichung Native 1’ (TN1)不含抗虫基因,均由国际水稻研究所提供。
田间采集褐飞虱,室内用分蘖期‘TN1’稻苗饲养、扩繁,为苗期抗虫性鉴定、蜜露量测定以及成株期室内抗性评价提供试虫。利用田间自发虫源进行田间抗虫性评价。
1.2 方法
1.2.1 苗期抗虫性鉴定
苗期抗虫性鉴定采用修订后的标准苗期群体鉴定法[5, 13],试验在广西壮族自治区农业科学院植物保护研究所玻璃网室内进行。试验以‘桂育11号’、‘柳沙油占202’、‘Rathu Heenati’(抗虫对照)和‘TN1’(感虫对照)作为处理,每处理重复3次。待秧苗长到3叶时,每株接入5头褐飞虱1~2龄若虫。待‘TN1’植株枯萎后7~10 d,参照国际标准[14]逐株进行定级,最后计算各品种的加权平均受害级别,平均受害级别:1.0~1.9为高抗(HR),2.0~3.9为中抗(MR),4.0~5.9为低抗(LR),6.0~7.9为中感(MS),8.0~9.0为高感(HS)。
1.2.2 水稻不同生育期蜜露量测定
采用黄凤宽等[15]、李波等[16]的方法测定褐飞虱雌成虫在水稻植株上分泌的蜜露量。将‘桂育11号’、‘柳沙油占202’、‘Rathu Heenati’和‘TN1’种植在塑料盆(上口径20 cm,下口径12 cm,高15 cm)中,待分蘖期和孕穗期时,将羽化后24 h内的褐飞虱长翅型雌成虫(经饥饿3 h后)接入预先准备好的石蜡膜parafilm小袋(约2.1 cm×3.2 cm)中,再将小袋固定到各品种的主茎上,每主茎2小袋,每小袋接虫1头,作为1个处理,每个品种设30个重复。待褐飞虱取食24 h后取下小袋,在万分之一电子天平上称量蜜露量。试验环境为室内自然变温(26~33 ℃),避免太阳光直射。
1.2.3 水稻成株期的室内抗性评价
将‘桂育11号’、‘Rathu Heenati’和‘TN1’移栽至水泥池(240 cm×110 cm×30 cm)中,每个品种2行,每穴5苗。待水稻生长到孕穗期,在水池周围用60目纱网围起,每丛水稻接入褐飞虱1~2龄若虫1 500~2 000头,日常注意预防蚂蚁、蜘蛛等天敌的捕食。接虫15 d后观察试验结果,以感虫对照‘TN1’完全枯死而抗虫对照‘Rathu Heenati’生长正常为有效试验。参照刘光杰等[17]分蘖盛期单株抗虫评价法进行成株期室内抗性评价:植株生长正常,死亡丛数≤1.0%(免疫I);死亡丛数(1.0%,10.0%](高抗HR);(10.0%,30.0%](中抗MR);死亡丛数(30.0%,50%](低抗LR);(50.0%,70.0%] (中感MS);死亡丛数>70.1%(高感HS)。
1.2.4 ‘桂育11号’成株期田间抗性评价
试验于2019年上半年在广西马山县乔利乡乔利村长屯进行,水稻田面积约800 m2。试验设‘桂育11号’和‘柳沙油占202’2个处理,每处理重复3次,共6个小区。小区面积约为60 m2,采用随机区组设计排列。株行距为15 cm×20 cm。3月9日播种,4月6日插秧,每穴4~5株。常规水肥管理,整个生育期不施用农药。5月22日开始调查,调查用盆拍法,每小区五点取样,每点4丛,5~8 d调查1次,记录各调查点水稻上稻飞虱的数量,以每百丛水稻计算,直至水稻收割。
2. 结果与分析
2.1 各水稻品种苗期抗虫性鉴定结果
各水稻品种苗期抗虫性鉴定结果见表1。由表1可知,‘桂育11号’的抗性与抗虫对照品种‘Rathu Heenati’的一样,均表现为低抗,‘柳沙油占202’表现为中感,感虫对照品种‘TN1’表现为高感。
表 1 各水稻品种苗期抗虫性鉴定结果1)Table 1. Evaluation results of seedling resistance of different rice varieties to Nilaparvata lugens水稻品种 Rice variety 平均抗性级别 Average resistant grade 抗性表现 Resistant type 桂育11号 Guiyu 11 4.60±0.62c 低抗(MR) 柳沙油占202 Liushayouzhan 202 7.23±0.38b 中感(MS) Rathu Heenati 4.23±0.80cd 低抗(MR) TN1 9.00±0.00a 高感(HS) 1)表中数据为平均值±标准误,同列数据后不同小写字母者表示差异显著(P<0.05,LSD法)
1)The data are means ± standard error, and different lowercase letters in the same column represent significant difference(P<0.05,LSD test)2.2 水稻不同生育期对褐飞虱分泌蜜露量的影响
各水稻品种不同生育期对褐飞虱蜜露分泌量的影响结果见表2。由表2可看出,无论是分蘖期还是孕穗期,褐飞虱在‘桂育11号’上的蜜露分泌量均与在抗虫对照‘Rathu Heenati’上的蜜露分泌量差异不显著,但显著低于在感虫对照‘TN1’上的蜜露分泌量;褐飞虱在‘柳沙油占202’上的蜜露分泌量与‘TN1’上的蜜露分泌量差异不显著,但显著高于在‘Rathu Heenati’上的蜜露分泌量。上述结果说明,分蘖期和孕穗期‘桂育11号’的抗性表现和‘Rathu Heenati’一样,表现为抗虫;‘柳沙油占202’表现为感虫。
表 2 褐飞虱取食不同生育期水稻24 h内的蜜露分泌量1)Table 2. Average quantity of honeydew of Nilaparvata lugens after feeding on rice at different stage for 24 hoursmg 水稻品种 Rice variety 分蘖期 Tillering phase 孕穗期 Booting stage 桂育11号 Guiyu 11 4.99±0.83b 4.22±0.86b 柳沙油占202 Liushayouzhan 202 11.92±2.01a 9.51±1.20a Rathu Heenati 3.00±0.88b 2.51±0.57b TN1 12.37±1.87a 10.81±2.00a 1)表中数据为平均值±标准误,同列数据后不同小写字母者表示差异显著(P<0.05,LSD法)
1)The data are means ± standard error, and different lowercase letters in the same column represent significant difference(P<0.05,LSD test)2.3 水稻成株期的室内抗性评价
各水稻品种成株期室内抗性鉴定结果见图1。接虫前,‘桂育11号’、‘TN1’和‘Rathu Heenati’均长势良好(图1a)。接虫15 d后,感虫对照‘TN1’全部枯死,抗虫对照‘Rathu Heenati’植株生长正常,此时‘桂育11号’生长正常(图1b),说明在室内,‘桂育11号’成株期的抗性表现和‘Rathu Heenati’一样,表现为抗虫。
2.4 ‘桂育11号’成株期田间对稻飞虱的抗性评价
田间‘桂育11号’等水稻品种上的稻飞虱虫口数量动态见图2。由图2可看出,2个水稻品种上稻飞虱数量随着水稻的生长总体呈下降趋势,以百丛水稻计,‘桂育11号’上稻飞虱的平均虫量从10 916.65头下降到218.33头,感虫对照‘柳沙油占202’上稻飞虱的平均虫量从12 883.35头下降到538.33头。调查发现‘桂育11号’上稻飞虱的平均虫量均显著低于感虫对照‘沙油占202’。本次试验中,2019年5月22日至6月中旬当地田间稻飞虱主要以白背飞虱为主(占90%以上),6月19日之后主要以褐飞虱为主(占95%以上)。以百丛水稻计,6月19日和6月24日‘桂育11号’上褐飞虱平均虫量分别为218.33和436.67头,均显著低于在‘柳沙油占202’上的(图2)。研究结果说明‘桂育11号’在田间对褐飞虱种群增长有显著的抑制作用,田间抗性表现明显。
3. 讨论与结论
苗期鉴定、蜜露量测定、成株期室内评价以及田间数量调查的结果表明,‘桂育11号’整个生育期对褐飞虱表现出抗性,抗性级别与抗虫对照品种‘Rathu Heenati’一致,田间对褐飞虱种群增长具有显著的控制作用,可应用于田间褐飞虱绿色防控。
我国病虫害防治长期依赖化学防治,大量使用化学农药带来了诸如“3R”问题(抗药性、残留和害虫再猖獗[18])、环境污染、食品安全等问题,这些问题已经引起全社会的关注。进入21世纪我国水稻病虫害防治策略由“预防为主、综合防治”转向“绿色防控、生态治理”[19],2015年农业部提出了《到2020年农药使用量零增长行动方案》[20],2017年农业部关于印发《“十三五”农业科技发展规划》的通知,要求开展化肥氮磷减施增效、农药减量控害的机理与调控途径等研究。农药减量控害被提上日程,需要不断探索和研究农作物病虫草害绿色防控技术。褐飞虱是水稻主要害虫之一,种植抗褐飞虱水稻品种是该虫绿色防控的重要措施。目前我国大部分抗性水稻品种米质普遍不优,刘光杰等[21]评价了我国242个新育成水稻品种(材料)的抗病虫性与米质,发现在整精米率(加工成本)、垩白米率和垩白度(外观品质)及直链淀粉的含量(食味性)4项主要指标中均达到优质标准一级米的品种(材料)仅占2.9%。随着人们生活水平的不断提高,发展绿色、安全、高品质的农产品已成为全社会的共识。‘桂育11号’米质特优、米粒晶莹透亮、米饭爽滑柔软且产量高,符合优质一等食用长粒形籼稻品种品质规定要求[11-12],适合在华南稻区种植。种植‘桂育11号’既可实现不施农药就能控制褐飞虱,又可满足人们对高品质农产品的需求,应用前景广阔。但有关‘桂育11号’对褐飞虱的抗性机制有待进一步研究。
-
表 1 1982—2023年我国稻渔综合种养面积和水产品产量
Table 1 Area and production of integrated rice-fish coculture in China from 1982 to 2023
年份 面积/万hm2 产量/万t 年份 面积/万hm2 产量/万t 1982 33.11 1.72 2003 161.95 101.44 1983 38.80 4.30 2004 163.61 104.02 1984 46.11 6.88 2005 155.59 101.45 1985 55.85 8.61 2006 145.17 106.60 1986 67.23 10.33 2007 150.89 116.05 1987 70.53 10.33 2008 140.47 116.06 1988 68.15 12.05 2009 134.48 120.36 1989 70.23 12.92 2010 127.67 122.08 1990 71.10 12.92 2011 126.52 123.80 1991 71.17 14.64 2012 136.65 133.25 1992 73.65 17.23 2013 151.65 143.56 1993 78.15 19.81 2014 149.29 147.86 1994 83.05 22.39 2015 150.16 155.82 1995 96.03 32.70 2016 148.40 162.84 1996 110.61 41.29 2017 168.27 194.75 1997 125.61 49.02 2018 202.48 233.31 1998 137.01 57.61 2019 234.66 291.33 1999 149.99 67.07 2020 246.01 317.06 2000 154.09 77.38 2021 264.41 355.69 2001 156.56 91.12 2022 286.37 387.22 2002 162.28 104.87 2023 299.36 416.65 -
[1] FAO. Food and agriculture data[DB/OL]. (2023-12-23)[2024-08-08]. https://www.fao.org/faostat/en/#home.
[2] VAN ITTERSUM M K. Crop yields and global food security: Will yield increase continue to feed the world?[J]. European Review of Agricultural Economics, 2016, 43(1): 191-192. doi: 10.1093/erae/jbv034
[3] CHEN W F, XU Z J, TANG L. 20 years' development of super rice in China: The 20th anniversary of the super rice in China[J]. Journal of Integrative Agriculture, 2017, 16(5): 981-983.
[4] CASSMAN K G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5952-5959.
[5] SWANSON B E. Global review of good agricultural extension and advisory service practices[M]. Rome: FAO , 2008.
[6] TIMMER C P, BLOCK S, DAWE D. Long-run dynamics of rice consumption, 1960−2050[C]//PANDEY D, BYERLEE D, DAWE D, et al. Rice in the global economy: Strategic research and policy issues for food security. Philippines: IRRI, 2010: 139-174.
[7] GRUBE A, DONALDSON D, KIELY T L, et al. Pesticides industry sales and usage 2006 and 2007 market estimates[R]. Washington, D C: Office of Pesticide Programs, Office of Chemical Safety and Pollution Prevention, U. S. Environmental Protection Agency, 2011.
[8] HEFFER P, GRUERE A, ROBERTS T. Assessment of fertilizer use by crop at the global level 2014-2014/15[R]. Paris: International Fertilizer Association (IFA) and International Plant Nutrition Institute (IPNI), 2017.
[9] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. doi: 10.1126/science.1182570
[10] FOLEY J A, RAMANKUTTY N, BRAUMAN K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342. doi: 10.1038/nature10452
[11] ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. doi: 10.1038/nature15743
[12] SOLOMON S. Climate change 2007: The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007
[13] LINQUIST B, VAN GROENIGEN K J, ADVIENTO-BORBE M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2012, 18(1): 194-209. doi: 10.1111/j.1365-2486.2011.02502.x
[14] 李俊杰, 李建平. 水稻生产成本效益国际比较及中国发展前景[J]. 中国稻米, 2021, 27(4): 22-30. [15] LI Y F, WU T Y, WANG S D, et al. Developing integrated rice-animal farming based on climate and farmers choices[J]. Agricultural Systems, 2023, 204: 103554. doi: 10.1016/j.agsy.2022.103554
[16] CUI J, LIU H, WANG H, et al. Rice-animal co-culture systems benefit global sustainable intensification[J]. Earths Future, 2023, 11(2): e2022EF002984. doi: 10.1029/2022EF002984
[17] HALWART M, GUPTA M V. Culture of fish in rice fields[M]. Penang: FAO and the World Fish Center, 2004.
[18] DE SOUSA A M B, SANTOS R R S, MORAES F H R, et al. Exploring the potential for sustainable weed control with integrated rice-fish culture for smallholder irrigated rice agriculture in the Maranhão Lowlands of Amazonia[J]. Renewable Agriculture and Food Systems, 2012, 27(2): 107-114. doi: 10.1017/S174217051100024X
[19] FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119-128.
[20] CLAVERO M, LÓPEZ V, FRANCH N, et al. Use of seasonally flooded rice fields by fish and crayfish in a Mediterranean wetland[J]. Agriculture Ecosystems & Environment, 2015, 213: 39-46.
[21] DARTEY P K A, BAM R K, OFORI J N. Preliminary studies in rice-fish culture in a rainfed lowland ecology in Ghana[J]. Ghana Journal of Agricultural Science, 1999, 32(1): 123.
[22] NNAJI J C, MADU C T, RAJI A. Profitability of rice-fish farming in Bida, North Central Nigeria[J]. Journal of Fisheries and Aquatic Science, 2013, 8(1): 148-153.
[23] 李荣福, 杜雪地, 徐忠香, 等. 中国稻田渔业起源与历史分析[J]. 中国渔业经济, 2023, 41(3): 113-126. [24] 中国稻渔综合种养产业发展报告(2018)[J]. 中国水产, 2019(1): 20-27. [25] 农业农村部. 农业农村部关于推进稻渔综合种养产业高质量发展的指导意见[J]. 河南水产, 2022(6): 38-39. [26] 中国稻渔综合种养产业发展报告(2024)全文发布[J]. 中国水产, 2024(8): 12-17. [27] 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26. [28] OEHME M, FREI M, RAZZAK M A, et al. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh[J]. Nutrient Cycling in Agroecosystems, 2007, 79(2): 181-191. doi: 10.1007/s10705-007-9106-6
[29] YU H Y, ZHANG X C, SHEN W Y, et al. A meta-analysis of ecological functions and economic benefits of co-culture models in paddy fields[J]. Agriculture Ecosystems & Environment, 2023, 341: 108195.
[30] 中国小龙虾产业发展报告(2024)[J]. 中国水产, 2024(7): 14-20. [31] 于秀娟, 郝向举, 杨霖坤, 等. 中国小龙虾产业发展报告(2023)[J]. 中国水产, 2023(7): 26-31. [32] 倪达书, 汪建国. 稻鱼共生生态系统中物质循环及经济效益[J]. 水产科技情报, 1985(6): 1-4. [33] JI Z J, ZHAO L F, ZHANG T J, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J]. Journal of Plant Ecology, 2023, 16(6): rtad014. doi: 10.1093/jpe/rtad014
[34] XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387.
[35] LIU J F, ZHANG Q, WANG Q Y, et al. Gross ecosystem product accounting of a globally important agricultural heritage system: The Longxian rice-fish symbiotic system[J]. Sustainability, 2023, 15(13): 10407. doi: 10.3390/su151310407
[36] 钟波. 稻−鳅生态系统能值分析[J]. 中国稻米, 2013, 19(3): 48-50. [37] DONG S P, GAO Y F, GAO Y P, et al. Evaluation of the trophic structure and energy flow of a rice-crayfish integrated farming ecosystem based on the Ecopath model[J]. Aquaculture, 2021, 539: 736626. doi: 10.1016/j.aquaculture.2021.736626
[38] 甄若宏, 王强盛, 张卫建, 等. 稻鸭共作对水稻条纹叶枯病发生规律的影响[J]. 生态学报, 2006, 26(9): 3060-3065. [39] 张亚, 廖晓兰, 刘薇, 等. 鸭粪提取物对水稻纹枯病菌的影响及其有效成分分析[J]. 中国生态农业学报, 2010, 18(1): 102-105. [40] 陈欣, 唐建军. 农业系统中生物多样性利用的研究现状与未来思考[J]. 中国生态农业学报, 2013, 21(1): 54-60. [41] 曹志强, 梁知洁, 赵艺欣, 等. 北方稻田养鱼的共生效应研究[J]. 应用生态学报, 2001, 12(3): 405-408. [42] 谢坚, 刘领, 陈欣, 等. 传统稻鱼系统病虫草害控制[J]. 科技通报, 2009, 25(6): 801-805. [43] 陈文辉, 彭亮, 刘莹莹, 等. 江汉平原稻虾综合种养模式经济效益和生态效益分析[J]. 湖北农业科学, 2019, 58(14): 160-166. [44] 黄毅斌, 翁伯奇, 唐建阳, 等. 稻−萍−鱼体系对稻田土壤环境的影响[J]. 中国生态农业学报, 2001, 9(1): 74-76. [45] 李锡勇, 黄婕. 水稻免耕养鱼田稻飞虱消长观察试验初报[J]. 广西农学报, 2005, 20(6): 7-9. [46] 吴敏芳, 郭梁, 张剑, 等. 稻鱼共作对稻纵卷叶螟和水稻生长的影响[J]. 浙江农业科学, 2016, 57(3): 446-449. [47] 魏守辉, 强胜, 马波, 等. 稻鸭共作及其它控草措施对稻田杂草群落的影响[J]. 应用生态学报, 2005, 16(6): 1067-1071. [48] 张峥, 卜德孝, 强胜. 不同稻田综合种养模式下杂草长期控制效果的调查[J]. 植物保护学报, 2022, 49(2): 693-704. [49] SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7(1): 2856. doi: 10.1038/s41598-017-02984-7
[50] NAYAK P K, NAYAK A K, PANDA B B, et al. Ecological mechanism and diversity in rice based integrated farming system[J]. Ecological Indicators, 2018, 91: 359-375. doi: 10.1016/j.ecolind.2018.04.025
[51] CHAKRABORTY, CHAKRABORTY. Effect of dietary protein level on excretion of ammonia in Indian major carp, Labeo rohita, fingerlings[J]. Aquaculture Nutrition, 1998, 4(1): 47-51.
[52] LAZZARI R, BALDISSEROTTO B. Nitrogen and phosphorus waste in fish farming[J]. Boletim Do Instituto De Pesca, 2008, 34(4): 591-600.
[53] LI P, WU G G, LI Y J, et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability[J]. Geoderma, 2022, 413: 115745. doi: 10.1016/j.geoderma.2022.115745
[54] REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture Ecosystems & Environment, 2023, 348: 108399.
[55] 钟松雄, 尹光彩, 陈志良, 等. 水稻土中砷的环境化学行为及铁对砷形态影响研究进展[J]. 土壤, 2016, 48(5): 854-862. [56] YUAN P L, WANG J P, LI C F, et al. Long-term rice-crayfish farming aggravates soil gleying and induced changes of soil iron morphology[J]. Soil Use and Management, 2022, 38(1): 757-770. doi: 10.1111/sum.12688
[57] ZHANG Z, DU L S, XIAO Z Y, et al. Rice-crayfish farming increases soil organic carbon[J]. Agriculture Ecosystems & Environment, 2022, 329: 107857.
[58] XU G C, LIU X, WANG Q S, et al. Integrated rice-duck farming mitigates the global warming potential in rice season[J]. Science of the Total Environment, 2017, 575: 58-66. doi: 10.1016/j.scitotenv.2016.09.233
[59] CHEN Y T, LIU C H, CHEN J, et al. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment[J]. Journal of Cleaner Production, 2021, 310: 127493. doi: 10.1016/j.jclepro.2021.127493
[60] FANG K K, GAO H, SHA Z M, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China[J]. Agriculture Ecosystems & Environment, 2021, 308: 107235.
[61] FANG K K, DAI W, CHEN H Y, et al. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123. doi: 10.1016/j.scitotenv.2021.147123
[62] FANG K K, CHEN H Y, DAI W, et al. Microbe-mediated reduction of methane emission in rice-frog crop ecosystem[J]. Applied Soil Ecology, 2022, 174.
[63] GUO L J, LIN W, CAO C G, et al. Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season[J]. Science of the Total Environment, 2023, 867: 161520. doi: 10.1016/j.scitotenv.2023.161520
[64] DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1): 228-237.
[65] 欧茜, 熊瑞, 周文涛, 等. 稻鱼共生养鱼密度对稻田甲烷排放的影响[J]. 农业环境科学学报, 2024, 43(9): 1-12. [66] 张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307. [67] 刘许辉, 张红禄, 贾青云, 等. 桂北高寒山区稻田生态种养下水稻及鱼生长试验[J]. 农业与技术, 2022, 42(16): 18-21. [68] 王奇, 李妹娟, 章家恩, 等. 稻鱼共作对水稻叶绿素荧光特征及产量的影响[J]. 作物杂志, 2021(6): 145-151. [69] 李艳蔷, 晏群. 稻鳅共生种养模式试验研究[J]. 中国农业资源与区划, 2018, 39(5): 54-60. [70] 周江伟, 刘贵斌, 吴涛, 等. 不同种养模式对水稻根系生长和产量性状的影响[J]. 江苏农业科学, 2018, 46(13): 55-58. [71] 郭天荣, 刘瑞琪, 曾晴, 等. 稻蛙种养对水稻功能叶片和籽粒养分含量及产量构成的影响[J]. 分子植物育种, 2022, 20(15): 5205-5212. [72] 姚义, 张明伟, 陈京都, 等. 稻虾共作模式下不同栽插密度对丰优香占群体结构及产量的影响[J]. 江苏农业科学, 2021, 49(3): 66-71. [73] 全国明, 章家恩, 杨军, 等. 稻鸭共作对稻米品质的影响[J]. 生态学报, 2008, 28(7): 3475-3483. [74] 甄若宏, 王强盛, 何加骏, 等. 稻鸭共作对水稻产量和品质的影响[J]. 农业现代化研究, 2008, 29(5): 615-617. [75] 陈灿, 黄璜, 郑华斌, 等. 稻田不同生态种养模式对稻米品质的影响[J]. 中国稻米, 2015, 21(2): 17-19. [76] 王强盛, 黄丕生, 甄若宏, 等. 稻鸭共作对稻田营养生态及稻米品质的影响[J]. 应用生态学报, 2004, 15(4): 639-645. [77] 安辉, 刘鸣达, 王厚鑫, 等. 不同稻蟹生产模式对稻蟹产量和稻米品质的影响[J]. 核农学报, 2012, 26(3): 581-586. [78] 陈灿, 郑华斌, 黄璜, 等. 稻田养鳅模式对稻米品质和经济效益的影响[J]. 中国稻米, 2015, 21(4): 124-127. [79] 纪力, 邵文奇, 陈富平, 等. 连年规模稻鸭共养对稻田土壤性状、稻米产量及品质的影响[J]. 中国农学通报, 2021, 37(13): 1-7. [80] 张印, 余政军, 王忍, 等. 鸭品种对稻鸭共生系统土壤理化性质、水稻产量及经济效益的影响[J]. 河南农业科学, 2021, 50(12): 23-31. [81] 董明辉, 顾俊荣, 李锦斌, 等. 稻虾生态种养和机插密度对优良食味粳稻产量与品质的影响[J]. 中国农学通报, 2021, 37(17): 1-12. [82] 彭翔, 戴林秀, 李京咏, 等. 稻田综合种养对长江中下游地区水稻产量和稻米品质影响的文献研究[J]. 中国稻米, 2022, 28(4): 55-60. [83] 王龙根, 张家宏, 谢成林, 等. 扬州市生态稻田养殖鱼产品农药残留分析研究[J]. 现代农业科技, 2016(7): 293. [84] 王冬武, 何志刚, 易继华, 等. 镉污染稻田“虾稻轮作−稻鱼共生”安全利用模式试验总结[J]. 当代水产, 2023, 48(3): 64-66. [85] WANG Q, LI M J, ZHANG J E, et al. Suitable stocking density of fish in paddy field contributes positively to 2-acetyl-1-pyrroline synthesis in grain and improves rice quality[J]. Journal of the Science of Food and Agriculture, 2023, 103(10): 5126-5137. doi: 10.1002/jsfa.12597
[86] XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917-1925. doi: 10.1111/gcb.13455
[87] BASHIR M A, WANG H Y, SUN W T, et al. The implementation of rice-crab co-culture system to ensure cleaner rice and farm production[J]. Journal of Cleaner Production, 2021, 316: 128284. doi: 10.1016/j.jclepro.2021.128284
[88] DU F L, HUA L L, ZHAI L M, et al. Rice-crayfish pattern in irrigation-drainage unit increased N runoff losses and facilitated N enrichment in ditches[J]. Science of the Total Environment, 2022, 848: 157721. doi: 10.1016/j.scitotenv.2022.157721
[89] 李双双, 刘卫柏, 蒋健. 农业机械化可以解决农业劳动力短缺吗?[J]. 中国农机化学报, 2024, 45(7): 316-322. [90] 稻渔综合种养技术规范(通则)[J]. 中国水产, 2018(5): 81-83. [91] “十三五”中国稻渔综合种养产业发展报告[J]. 中国水产, 2022(1): 43-52. -
期刊类型引用(1)
1. 吴碧球,黄所生,李成,凌炎,黄芊,龙丽萍,黄凤宽. 抗虫品种桂育11号对褐飞虱取食、生长发育及种群增长的影响. 应用昆虫学报. 2022(05): 1059-1067 . 百度学术
其他类型引用(1)