• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

广东潮土生物炭对不同水稻品种的土壤细菌群落的影响

丁玮, 阳树英, 刘洋, 张亚宁, 张波

丁玮, 阳树英, 刘洋, 等. 广东潮土生物炭对不同水稻品种的土壤细菌群落的影响[J]. 华南农业大学学报, 2022, 43(3): 42-49. DOI: 10.7671/j.issn.1001-411X.202108022
引用本文: 丁玮, 阳树英, 刘洋, 等. 广东潮土生物炭对不同水稻品种的土壤细菌群落的影响[J]. 华南农业大学学报, 2022, 43(3): 42-49. DOI: 10.7671/j.issn.1001-411X.202108022
DING Wei, YANG Shuying, LIU Yang, et al. Effects of fluvo-aquic soil biochar on soil bacterial communities of different rice varieties in Guangdong Province[J]. Journal of South China Agricultural University, 2022, 43(3): 42-49. DOI: 10.7671/j.issn.1001-411X.202108022
Citation: DING Wei, YANG Shuying, LIU Yang, et al. Effects of fluvo-aquic soil biochar on soil bacterial communities of different rice varieties in Guangdong Province[J]. Journal of South China Agricultural University, 2022, 43(3): 42-49. DOI: 10.7671/j.issn.1001-411X.202108022

广东潮土生物炭对不同水稻品种的土壤细菌群落的影响

基金项目: 国家重点研发计划子课题(2017YFD200803-01)
详细信息
    作者简介:

    丁玮,硕士研究生,主要从事农业生态方向研究,E-mail:dwjy2021@163.com

    通讯作者:

    阳树英,副教授,博士,主要从事农业生态方向研究,E-mail: ysyalxh@126.com

  • 中图分类号: S181;S154.1

Effects of fluvo-aquic soil biochar on soil bacterial communities of different rice varieties in Guangdong Province

  • 摘要:
    目的 

    探明生物炭对不同水稻品种的土壤细菌群落多样性、丰度及结构的影响,为生物炭在水稻生产中的应用提供科学依据。

    方法 

    2019年选取广东省江门县台山镇潮土型晚稻田,设置不施生物炭(对照,CK)、生物炭施加3.5 t/hm2(Tr1)、生物炭施加7 t/hm2(Tr2)为主区,选用6个不同的常规优质水稻品种‘黄华占’、‘五常香稻’、‘象牙香占’、‘湘晚籼17’、‘农香32’和‘玉针香’进行裂区试验,并进行16S rRNA基因V3-V4高通量测序技术分析。

    结果 

    生物炭Tr1、Tr2处理均显著提高了‘玉针香’的土壤细菌群落多样性,生物炭Tr2处理显著提高了‘玉针香’的土壤细菌群落丰富度,生物炭Tr1处理显著提高了‘黄华占’的土壤细菌群落丰富度。共获得细菌73门92纲174目298科682属456种,主要包含变形菌门Proteobacteria、厚壁菌门Firmicutes、拟杆菌门Bacteroidetes、硝化螺旋菌门Nitrospirae和酸杆菌门Acidobacteria等10个主要门类细菌,其中变形菌门为第1优势菌(相对丰度为30.0%~61.1%),以γ–、δ–、α–变形菌纲为优势亚群,某些水稻品种的变形菌门、拟杆菌门在Tr2处理较CK出现显著上升,广古菌门Euryarchaeota在Tr1处理较CK明显上升。生物炭处理引起了对应土壤细菌群落结构组成在属水平上的变化,食酸菌属Acidovorax、鞘氨醇单胞菌属Sphingomonas、土地杆菌属Pedobacter等相对丰度较低或极低的土壤细菌类群更敏感,更容易受到生物炭的影响。与CK相比,生物炭Tr1处理对土壤细菌群落组成及分布存在影响。

    结论 

    生物炭处理可在一定程度上对稻田土壤细菌群落产生影响,水稻品种‘玉针香’和‘黄华占’的土壤细菌群落受生物炭施加影响变化较大,生物炭处理提高了‘玉针香’和‘黄华占’的土壤细菌群落多样性及丰富度,生物炭处理的差异主要体现在土壤细菌群落相对丰度上。

    Abstract:
    Objective 

    To discover the effects of biochar on soil bacterial community diversity, abundance and structure of different rice varieties, and provide a scientific basis for the application of biochar in paddy field.

    Method 

    Experiment of split-split plot was designed in the late rice field of Fluvo-aquic soil type in Taishan Town of Jiangmen County, Guangdong Province in 2019, treatments were designed with no biochar application(CK), biochar application of 3.5 t/hm2 (Tr1) and 7 t/hm2 (Tr2) as the main plots, six different conventional high-quality rice varieties, including ‘Huanghuazhan’, ‘Wuchangxiangdao’, ‘Xiangyaxiangzhan’, ‘Xiangwanxian’, ‘Nongxiang 32’ and ‘Yuzhenxiang ’, were designed as the subplots in each main plots. 16S rRNA gene V3-V4 high-throughput sequencing technology analysis was conducted.

    Result 

    Biochar Tr1 and Tr2 treatments significantly improved the bacterial community diversity of rice variety ‘Yuzhenxiang’, and biaochar Tr2 treatment significantly improved the bacterial community richness of rice variety ‘Yuzhenxiang’, and also biaochar Tr1 treatment significantly increased the bacterial community abundance of rice variety ‘Huanghuazhan’. A total of 73 phyla, 92 classes, 174 orders, 298 families, 682 genera and 456 species of bacteria were obtained, mainly including 10 main phyla of Proteobacteria, Firmicutes, Bacteroidetes, Nitrospirae, Acidobacteria, etc. Among them, the Proteobacteria are the first dominant bacteria (the proportion of relative abundance reaching 30.0%~61.1%), with γ-, δ-, and α-Proteobacteria as the dominant subgroups. Compared with CK, Proteobacteria and Bacteroidetes of some rice varieties showed a significant increase in Tr2 treatment, and Euryarchaeota increased significantly in Tr1 treatment. Biochar treatment caused changes in the structural composition of the corresponding soil bacterial community at the genus level. Soil bacterial groups with relatively low or extremely low abundance, such as Acidovorax, Sphingomonas and Pedobacter, were more sensitive and susceptible to the impact of biochar. The Tr1 treatment had an effect on the composition and distribution of soil bacteria compared with CK.

    Conclusion 

    Biochar treatment can affect the soil bacterial community in rice field to some extent, the soil bacterial communities of rice varieties of ‘Yuzhenxiang’ and ‘Huanghuazhan’ are mostly affected by biochar. Biochar treatment increases the soil bacterial community diversity and richness of rice varieties of ‘Yuzhenxiang’ and ‘Huanghuazhan’, and the difference between biochar treatment is mainly reflected in the relative abundance of soil bacterial communities.

  • 紫色马铃薯原产于南美洲,其果皮和果肉呈现紫色至黑色,较普通马铃薯含有更高的花青素等抗氧化成分,具有抗氧化、抗衰老、降脂等重要保健功能[1]。随着我国马铃薯主食加工技术的开发和成熟,作为主食加工的主要原料,马铃薯全粉的市场需求趋旺。冻融固液分离法是制备马铃薯全粉的一种方法,主要通过冻融离心分离去除薯泥中大部分的水分,缩短薯泥干燥环节消耗的时间,具有能耗低、全粉细胞破损率低等优势[2-3]。但该工艺离心环节会产生30%~35%的汁液副产物,其含有丰富的碳水化合物、游离氨基酸等营养成分及Patatin糖蛋白、多酚和花色苷等活性成分[4-9],具有较强的再加工利用潜力。然而目前因缺乏成熟的转化利用技术,该工艺产生的马铃薯汁液只能直接或经处理后排放,不仅导致了资源的严重浪费,也产生了严重的环境污染问题。因此有必要对该工艺的冻融分离汁液副产物进行再转化利用,解决汁液排放带来的环保问题,提高资源利用率,延伸马铃薯产业链,增加附加值。

    作为世界第一大啤酒生产和消费国,中国国产啤酒产品结构单一、口味淡薄、同质化严重,随着消费的逐步转型和升级,其已无法满足多元化、个性化和高端化的消费需求[10]。近几年来,个性风格突出、具有保健功能的啤酒新产品逐渐成为市场的新宠,已有利用蓝莓汁[11]、红枣[12]、香蕉[13]、樱桃[14]、可可浆[15]等作为辅料,添加入麦芽汁中发酵不同类型保健啤酒的研究报道。薯类含有丰富的淀粉,已被不少研究者作为添加辅料用于发酵薯酒饮料[16-17]。Panda等[18]将紫甘薯泥作为辅料发酵富含花青素的啤酒,结果表明添加30%(w)的紫甘薯所酿造的啤酒风味最好,且具有较强的DPPH清除活性。本试验将紫色马铃薯全粉加工过程中产生的冻融分离汁液用酶解糖化处理后,添加到麦芽汁中发酵浓色啤酒。对酶解汁液添加量、pH、温度等发酵条件进行优化,并分析所酿造啤酒的主要抗氧化成分及含量,评价其体外抗氧化活性,以期为利用紫色马铃薯汁液发酵富含花青素的浓色啤酒提供技术参考,促进马铃薯冻融分离汁液的资源化利用。

    紫色马铃薯‘黑金刚’,产自甘肃陇西;大麦芽(浓香琥珀麦芽、焦香麦芽、欧麦淡色艾尔麦芽)、啤酒花颗粒(布兰科),均购自超级麦芽(北京)贸易有限公司;啤酒酵母(M20、M21、M36、M44、M47),Mangrove Jack’s公司生产,购自超级麦芽(北京)贸易有限公司;α−淀粉酶(5万U/g)、糖化酶(5万U/g),购自北京索莱宝科技有限公司;麦芽糖浆购自蕲春县天利生物工程有限公司。

    3,5−二硝基水杨酸(分析纯)购自成都市科隆化学品有限公司;Folin-Ciocalteu试剂购自北京索莱宝科技有限公司;没食子酸标准品、绿原酸标准品、1,1−二苯基−2−三硝基苯肼(DPPH)、2,2'−联氮−双−3−乙基苯并噻唑啉−6−磺酸(ABTS)购自南京都莱生物技术有限公司。

    CPA225D型电子天平,德国赛多利斯股份公司;YXQ-LS-50SII高压蒸汽灭菌锅,上海博讯实业有限公司;SS300-N食品工业用离心机,张家港市永泰阳光机械制造有限公司;ST16R冷冻离心机,美国Thermo公司;PHS-4C+型酸度计,成都世纪方舟科技有限公司;UV-3100PC型紫外分光光度仪计,上海美谱达仪器有限公司;LB-20T型折光仪,深圳市汇科计量检测技术有限公司;HZQ-X100A型恒温振荡培养箱,上海一恒科学仪器有限公司;DK-8D型电热恒温水槽,上海齐欣科学仪器有限公司;SHP-160型智能生化培养箱,上海三发科学仪器有限公司。

    清洗马铃薯、切片、蒸汽熟化、冷冻、解冻、离心等步骤制备马铃薯全粉,收集离心产生的汁液。采用双酶水解法酶解糖化马铃薯汁液,每100 mL汁液添加0.8 g α−淀粉酶和1.0 g糖化酶,糖化温度为70 ℃,糖化时间为1 h,pH 5.0,糖化结束后煮沸5 min灭活并过滤。经测定,酶解汁液还原糖为19.57 mg/mL,α−氨基氮为360.6 μg/mL,花青素为1.38 mg/mL,总酚为296.5 μg/mL。

    取破碎麦芽,将焦香麦芽、浓香琥珀麦芽、欧麦淡色艾尔麦芽按照质量比1∶2∶3混合,添加4倍质量的水,调pH至5.5。糖化程序:45 ℃ 30 min;60 ℃ 60 min;72 ℃10 min;78 ℃ 10 min;迅速降温至45 ℃,趁热滤布过滤,并添加浓缩麦芽糖浆调整麦芽汁浓度至16°P。经测定,还原糖为103.5 mg/mL,α−氨基氮为121.2 μg/mL,总酚为409.0 μg/mL。

    向酶解糖化麦芽汁中添加一定体积的糖化马铃薯汁液,并混合均匀。将混合汁液煮沸15 min后,按0.12 g/L添加啤酒花,继续煮沸30 min,再按0.28 g/L添加啤酒花。

    酵母种子液的制备:取活化的斜面菌种接种于10 mL 12°P麦芽汁中,28 ℃培养36 h,再转接种于10 mL 12°P麦芽汁中,20 ℃培养36 h,再转接种于200 mL 12°P麦芽汁中,15 ℃培养24~36 h,得到种子液,其酵母细胞数量为1×107 mL−1

    采用下面酵母发酵法进行主发酵,接种啤酒酵母种子液,恒温发酵至24 h质量损失不超过0.2 g,即为发酵终点。主发酵结束后缓慢降温至0 ℃,经过7 d的后熟及饱和CO2处理。采用4000 r/min离心15 min,过滤分离即得啤酒。啤酒发酵工艺流程图见图1

    图  1  啤酒发酵工艺流程图
    Figure  1.  Schematic flow diagram for beer fermentation operation

    主要考察马铃薯酶解汁液添加体积分数(0、25%、33%、50%、67%、75%)、初始pH(5.0、5.5、6.0、6.5、7.0)、酵母接种体积分数(2%、4%、6%、8%、10%)、发酵温度(10、12、15、18、22 ℃)和酵母种类(M20、M21、M36、M44、M47)对啤酒发酵过程主要指标的影响,各因素试验固定水平分别为:马铃薯酶解汁液添加体积分数50%,初始pH 6.0,酵母接种体积分数6.0%,发酵温度15 ℃,酵母种类M21。取150 mL混合汁置于250 mL三角瓶,接种啤酒酵母进行发酵。采用模糊数学评定法对后发酵结束的样品进行感官评价,测定发酵液的发酵度、酒精度、还原糖含量、总酸、pH、色泽等理化指标。

    根据单因素试验结果,选取对啤酒指标影响最大的3个因素:马铃薯酶解汁液添加体积分数、pH和温度,以啤酒感官评分及酒精度为指标,采用L9(34)正交试验进行发酵工艺优化,因素及水平见表1

    表  1  啤酒发酵条件正交试验因素水平
    Table  1.  Factors and levels of orthogonal experiment for beer fermentation conditions
    水平 Level 因素 Factor
    紫色马铃薯酶解汁液添加体积分数/%
    Addition of purple potato enzymolysis juice (A)
    pH(B) θ/℃ (C)
    1 75 5.0 12
    2 50 5.5 15
    3 25 6.5 18
    下载: 导出CSV 
    | 显示表格

    由10名食品感官评定专业人员组成评定小组,对啤酒的色泽、泡沫、香气、杀口和口味进行感官评定,并设4个等级:优、良、中和差。评价为优的啤酒色泽暗红、酒体澄清透明;泡沫丰富、细腻,挂杯持久性好;麻舌感强烈,有明显的舒适、新鲜、刺激感;口味纯正、爽口、醇厚;有明显的酒花芳香,无异香。评价为良的啤酒色泽暗红、较透明;泡沫较丰富细腻,挂杯持久性较好;舒适、新鲜、刺激的感觉较为明显;口味纯正、较爽口、较醇厚;有较明显的酒花芳香。评价为中的啤酒色泽较浅、微浑浊;泡沫少,挂杯持久性差;较新鲜,刺激感较差;口味单薄,不爽口;无明显的酒花芳香。评价为差的啤酒色泽浅、明显浑浊状;无舒适、新鲜、刺激感;口味很单薄,不爽口;有其他异味。以色泽、泡沫、杀口、口味、香气为因素集,以好、较好、一般、差为评语集,根据感官评定结果,建立4个单因素评价矩阵,用模糊数学评定方法对其进行分析。因素集U={色泽,泡沫,香气,杀口,口味};评语集V={好,较好,一般,差};其中,好(100分),较好(80分),一般(70分),差(60分)。权重集X={0.15,0.20,0.20,0.30,0.15},色泽15分,泡沫20分,杀口20分,口味30分,香气15分,共100分。模糊关系综合评定集Y=XR,其中X为权重集,R为模糊矩阵。

    还原糖含量采用3,5−二硝基水杨酸比色法测定[19];发酵度、酒精度、色度、总酸含量均采用GB/T 4928—2008《啤酒分析方法》[20]测定;pH采用酸度计测定。

    总多酚含量测定采用Folin-Ciocalteu法[21];绿原酸含量测定采用比色法[22];花青素含量测定采用pH示差法[23];总抗氧化能力测定采用ABTS法[22];DPPH自由基清除率测定采用比色法[24],总还原力测定采用铁离子还原法(FRAP)[25]

    运用Office Excel 2010对数据进行处理及方差分析,差异显著性分析用Duncan’ s新复极差法。

    表2可知,与纯麦芽汁啤酒(CK)相比,添加不同体积分数的紫色马铃薯酶解汁液均降低了发酵啤酒的酒精度、提高了发酵啤酒的pH,但随着酶解汁液添加体积分数的增加,啤酒酒精度、色度、发酵度和pH均呈降低趋势,而还原糖含量、总酸含量呈逐渐增加趋势。表明啤酒酵母对紫色马铃薯酶解汁液的利用转化能力弱于麦芽汁,这与马铃薯酶解汁液中α−氨基氮含量较高,而还原糖含量较低有关[26]。紫色马铃薯酶解汁液添加体积分数为25%~50%较为适宜,综合感官评分均在80以上,其中酶解汁液添加体积分数为25%时发酵的啤酒感官综合评分为88.0,且酒精度、发酵度较高,分别为4.28%和56.47%。

    表  2  紫色马铃薯酶解汁液添加体积分数对浓色啤酒感官评分及理化指标的影响1)
    Table  2.  Effects of potato enzymolysis juice addition on sensory score and physicochemical properties of dark beer
    φ(紫色马铃薯
    酶解汁液)/%
    Addition of purple potato enzymolysis juice
    感官评分
    Sensory
    score
    酒精度(φ)/%
    Alcohol content
    ρ(还原糖)/
    (mg·mL−1)
    Reducing sugar content
    色度/EBC
    Chroma
    φ(总酸)/
    (mL·L−1)
    Total acids
    pH 发酵度/%
    Fermentative degree
    发酵力/
    (g·L−1·d−1)
    Fermentation capacity
    0(CK) 85.8 4.48±0.03a 32.53±4.89a 34.83±0.25ab 12.8±0.3a 4.17 60.87 6.85
    25 88.0 4.28±0.02b 9.96±0.02f 34.35±0.26b 7.9±0.1c 4.81 56.47 6.09
    33 84.8 4.23±0.04b 10.10±0.03e 35.04±0.20a 8.1±0.1c 4.74 53.85 5.41
    50 80.5 4.11±0.05c 11.16±0.03c 30.84±0.15d 9.1±0.3b 4.54 52.43 4.26
    67 76.6 3.14±0.03d 10.37±0.02d 27.23±0.20e 9.3±0.4b 4.33 50.32 3.21
    75 72.2 3.08±0.05d 12.59±0.03b 20.19±0.20c 9.4±0.4b 4.25 48.89 3.21
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    表3可知,随着发酵初始pH的增加,啤酒样品酒精度、还原糖含量、色度、总酸和发酵度均呈下降趋势。相对较高的pH不利于乙醇发酵,不能利用酵母代谢产生更多的有机酸成分。较适宜的发酵初始pH范围为5.0~6.5,其中pH为6.0时,综合感官评分最高,为85.4;酒精度在pH为6.5时最高,为4.66%,发酵度则在pH为5.0时最高,为66.15%。

    表  3  不同初始pH对浓色啤酒感官评分及理化指标的影响1)
    Table  3.  Effects of initial pH on sensory score and physicochemical properties of dark beer
    初始 pH
    Initial pH
    感官评分
    Sensory score
    酒精度(φ)/%
    Alcohol content
    ρ(还原糖)/
    (mg·mL−1)
    Reducing sugar content
    色度/EBC
    Chroma
    φ(总酸)/
    (mL·L−1)
    Total acids
    pH 发酵度/%
    Fermentative degree
    发酵力/
    (g·L−1·d−1)
    Fermentation capacity
    5.0 82.6 4.49±0.04b 18.92±0.15a 39.50±0.20a 9.7±0.1a 4.67 66.15 4.67
    5.5 83.2 4.26±0.04d 18.64±0.20a 38.88±0.10ac 9.7±0.1a 4.69 63.08 4.76
    6.0 85.4 4.53±0.03c 13.96±0.20b 38.29±0.20bc 9.4±0.1b 4.68 64.62 4.85
    6.5 82.3 4.66±0.02a 8.61±0.21c 34.88±0.15e 8.2±0.1c 4.73 65.38 5.18
    7.0 80.2 4.63±0.05a 5.75±0.31d 36.52±0.20d 8.0±0.1d 4.66 61.52 5.22
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    表4可知,不同酵母菌株对啤酒发酵的各项指标影响不同。M20发酵的啤酒酒精度相对较高;M36发酵的啤酒还原糖含量最低,发酵度、色度最高;而各组样品的总酸含量则没有明显差别。这表明M36会更多地利用还原糖进行繁殖,乙醇转化能力较弱。酵母菌株选用M21或M20较适宜,综合感官评分较高。其中选用M21酵母时,发酵的啤酒综合评分为86.3,且酒精度、发酵度较高,分别为4.25%和53.08%。

    表  4  不同酵母菌种对浓色啤酒感官评分及理化指标的影响1)
    Table  4.  Effects of yeast strains on sensory score and physicochemical properties of dark beer
    酵母菌株
    Yeast starter
    感官评分
    Sensory score
    酒精度(φ)/%
    Alcohol content
    ρ(还原糖)/
    (mg·mL−1)
    Reducing sugar content
    色度/EBC
    Chroma
    φ(总酸)/
    (mL·L−1)
    Total acids
    pH 发酵度/%
    Fermentative degree
    发酵力/
    (g·L−1·d−1)
    Fermentation capacity
    M20 84.3 4.49±0.00a 15.18±0.05b 36.06±0.06b 9.5±0.3a 4.56 51.54 5.84
    M21 86.3 4.25±0.00b 13.47±0.03c 35.66±0.11c 9.5±0.2a 4.53 53.08 5.54
    M36 80.8 4.26±0.00b 8.70±0.02e 37.21±0.35a 9.1±0.3a 4.61 60.38 5.83
    M44 84.1 4.24±0.00b 15.72±0.03a 34.94±0.26d 10.5±2.1a 4.34 47.31 4.66
    M47 81.6 4.17±0.00c 12.92±0.04d 33.17±0.10e 9.1±1.0a 4.62 53.08 5.74
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    表5可知,随着酵母接种量(φ)的增加,啤酒样品酒精度和发酵度均呈下降趋势,而还原糖含量、色度呈上升趋势,总酸和pH则无明显变化。结果表明啤酒酵母接种量越多,其用于繁殖的糖就越多,产生酒精的量就越少。初始酵母接种量(φ)为2%~6%较为适宜,综合感官评分较高,其中酵母接种量(φ)为6%时发酵的啤酒综合评分为87.2,且酒精度、发酵度较高,分别为5.01%和60.38%。

    表  5  不同酵母接种体积分数对浓色啤酒感官评分及理化指标的影响1)
    Table  5.  Effects of yeast inoculation doses on sensory score and physicochemical properties of dark beer
    φ(酵母接种)/%
    Yeast inoculation
    dosage
    感官评分
    Sensory score
    酒精度(φ)/%
    Alcohol content
    ρ(还原糖)/
    (mg·mL−1)
    Reducing
    sugar content
    色度/EBC
    Chroma
    φ(总酸)/
    (mL·L−1)
    Total acids
    pH 发酵度/%
    Fermentative degree
    发酵力/
    (g·L−1·d−1)
    Fermentation capacity
    2 82.1 5.84±0.00a 9.39±0.04c 33.24±0.15c 10.1±0.2a 4.57 61.54 6.06
    4 85.1 5.09±0.00c 9.25±0.03d 32.18±0.10d 9.7±0.1a 4.64 61.15 6.20
    6 87.2 5.01±0.00d 9.41±0.04c 33.01±0.20c 9.6±0.2a 4.64 60.38 6.19
    8 81.2 4.83±0.00e 11.01±0.12a 34.02±0.15a 9.1±0.9a 4.61 60.38 6.53
    10 78.5 5.33±0.00b 10.14±0.03b 33.60±0.15b 9.6±1.4a 4.51 59.62 7.80
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    表6可知,随着主发酵温度的升高,啤酒样品酒精度均呈先升后降趋势,而还原糖含量、色度呈下降趋势,且色度间差异显著,但pH、发酵度间无显著差异。在一定范围之内,酵母的代谢活动随着温度的升高而加快,酒精的产量也随之增加,产品风味逐渐变得丰满。发酵温度过高,酵母代谢活动受到抑制,酒精产量反而下降,甲醇和杂醇油等发酵副产物含量增多[27],导致原酒品质变差。主发酵温度为12~18 ℃较为适宜,综合感官评分较高,其中15 ℃发酵的啤酒综合评分为86.3,且酒精度、发酵度最高,分别为4.85%和60.77%。

    表  6  不同发酵温度对浓色啤酒感官评分及理化指标的影响1)
    Table  6.  Effects of fermentation temperatures on sensory score and physicochemical properties of dark beer
    发酵温度/℃
    Fermentation temperature
    感官评分
    Sensory score
    酒精度(φ)/%
    Alcohol content
    ρ(还原糖)/
    (mg·mL−1)
    Reducing
    sugar content
    色度/EBC
    Chroma
    φ(总酸)/
    (mL·L−1)
    Total acids
    pH 发酵度/%
    Fermentative degree
    发酵力/
    (g·L−1·d−1)
    Fermentation capacity
    10 85.1 4.62±0.00d 11.65±0.02a 39.80±0.20a 10.4±0.5a 4.71 55.38 5.52
    12 84.8 4.59±0.00e 8.83±0.04b 38.42±0.15b 9.7±0.1ab 4.70 60.38 5.67
    15 86.3 4.85±0.00a 8.59±0.02c 37.96±0.15b 9.1±0.2b 4.85 60.77 8.87
    18 84.1 4.79±0.00b 8.77±0.02b 36.45±0.20c 9.3±1.0ab 4.46 60.77 6.53
    22 76.2 4.65±0.00c 8.59±0.03c 34.97±0.20d 8.9±0.9b 4.71 60.38 5.50
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    根据单因素试验结果,选取紫色马铃薯酶解汁液添加体积分数(A)、发酵pH (B)、发酵温度(C)为因素,采用L9(34)正交试验进行糖化工艺优化,结果见表7。由表7可知,试验因素对添加紫色马铃薯酶解汁液的啤酒感官评分的影响顺序为pH(B)>发酵温度(C)>酶解汁液添加体积分数(A),最优水平组合为A3B3C2,即紫色马铃薯酶解汁液添加量(φ)为25%,初始pH为6.5,15 ℃条件下发酵10 d的啤酒感官评分最高(86.9),且酒液呈琥珀色、晶莹剔透,酒香协调、入口柔顺,色度为37.71 EBC,还原糖为18.69 mg/mL,酒精度为5.84%,pH为 5.01,残糖度为9.53°Bx,总酸为15.6 mL/L,符合国标GB 4927—2008《啤酒》[28]相关指标要求。

    表  7  添加紫色马铃薯酶解汁液的浓色啤酒发酵正交试验结果
    Table  7.  Results of orthogonal experiment for dark beer fermentation with addition of purple potato enzymolysis juice
    试验号
    Experiment No.
    A B C 误差
    Error
    感官评分
    Sensory score
    1 1 1 1 1 73.2
    2 1 2 2 2 78.8
    3 1 3 3 3 79.6
    4 2 1 2 3 78.7
    5 2 2 3 1 68.8
    6 2 3 1 2 83.7
    7 3 1 3 2 75.0
    8 3 2 1 3 81.5
    9 3 3 2 1 86.9
    k1 72.150 70.603 74.450 71.250
    k2 72.050 71.333 76.433 74.137
    k3 76.103 78.367 69.420 74.917
    极差 Range 4.053 7.764 7.013 3.667
    下载: 导出CSV 
    | 显示表格

    采用最优工艺条件制备的紫色马铃薯浓色啤酒,与市售浓色啤酒中的主要抗氧化成分含量进行比较。由表8可知,纯麦芽浓色啤酒及市售浓色啤酒未检出花青素成分。与纯麦芽浓色啤酒及市售浓色啤酒相比,本研究制备的紫色马铃薯浓色啤酒总酚、绿原酸含量显著提高,并含有丰富的来自于马铃薯酶解汁液的花青素成分,总酚、绿原酸和花青素含量分别为360.2、685.7和208.4 mg/L。其中总酚和绿原酸含量分别为市售产品含量的2.90和1.14倍。与未发酵混合汁液相比,添加紫色马铃薯酶解汁液浓色啤酒的总酚含量显著提高,可能与发酵过程中酚类物质的部分释放有关[29];绿原酸和花青素含量减少表明其在发酵过程中的稳定性较差,但在最后的啤酒中其含量仍高于市售产品。因此,添加紫色马铃薯酶解汁液可以赋予浓色啤酒更多的抗氧化物质。

    表  8  添加紫色马铃薯酶解汁液的浓色啤酒与市售浓色啤酒抗氧化成分含量比较1)
    Table  8.  Contents of antioxidants in commercial dark beer and dark beer with addition of purple potato enzymolysis juice
    样品
    Sample
    ρ/(mg·L−1)
    总酚 Total phenol 绿原酸 Chlorogenic acid 花青素 Anthocyanin
    添加紫色马铃薯酶解汁液的浓色啤酒
    Dark beer with addition of purple potato enzymolysis juice
    360.2±3.9a 685.7±11.6c 208.4±6.0b
    未发酵混合汁液 Mixture juice before fermentation 352.7±1.8b 1104.9±7.9a 691.3±23.1a
    纯麦芽浓色啤酒 Dark beer prepared with pure wort 186.0±1.5c 1020.0±41.9b 0
    某市售浓色啤酒 A commercial dark beer 124.2±2.8d 602.1±24.4d 0
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    选择最优发酵条件制备的添加紫色马铃薯酶解汁液的浓色啤酒,将其稀释10倍后进行体外抗氧化活性评价。由表9可知,与纯麦芽浓色啤酒及市售浓色啤酒相比,添加25%(φ)紫色马铃薯酶解汁液发酵制备的浓色啤酒具有更高的体外抗氧化能力。样品10倍稀释液总还原力与0.150 mg/mL维生素C溶液相当,分别为纯麦芽浓色啤酒和市售浓色啤酒的1.80和2.80倍;DPPH自由基清除率为49.9%,与0.043 mg/mL 维生素C溶液清除能力相当,分别为纯麦芽浓色啤酒和市售浓色啤酒的1.06和1.44倍;ABTS自由基清除率为83.9%,分别为纯麦芽浓色啤酒和市售浓色啤酒1.13和1.20倍。综合各抗氧化指标,添加25%(φ)紫色马铃薯酶解汁液可赋予浓色啤酒更强的体外抗氧化活性。与未发酵混合汁液相比,紫色马铃薯浓色啤酒DPPH自由基清除率略有下降,可能与啤酒酵母细胞在发酵过程中吸附花青素等抗氧化成分有关[30]

    表  9  添加紫色马铃薯酶解汁液的浓色啤酒与市售浓色啤酒体外抗氧化能力比较1)
    Table  9.  Comparison of antioxidant capacities in vitro between commercial dark beer and dark beer with addition of purple potato enzymolysis juice
    样品
    Sample
    总还原力
    Total reduction capacity
    DPPH自由基清除能力
    DPPH radical scavenging capacity
    ABTS自由基
    清除率/%
    ABTS radical scavenging rate
    还原值
    Reduction
    value
    ρ(维生素C)/
    (mg·mL−1)
    Vitamin C content
    清除率/%
    Scavenging
    rate
    ρ(维生素C)/
    (mg·mL−1)
    Vitamin C
    content
    添加紫色马铃薯酶解汁液的浓色啤酒
    Dark beer with addition of purple potato enzymolysis juice
    0.9509±0.022 4a 0.150±0.016a 49.9±0.6b 0.043±0.003b 83.9±2.3a
    未发酵混合汁液
    Mixture juice before fermentation
    0.9138±0.006 5b 0.143±0.019a 55.3±0.8a 0.048±0.004a 37.0±3.3c
    纯麦芽浓色啤酒
    Dark beer prepared with pure wort
    0.5259±0.006 8c 0.074±0.019b 46.8±0.5c 0.040±0.003c 74.0±3.4b
    某市售浓色啤酒 A commercial dark beer 0.3460±0.001 8d 0.042±0.020c 34.6±0.5d 0.028±0.003d 69.9±1.3b
     1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    紫色马铃薯冻融分离汁液作为马铃薯全粉冻融制备工艺的加工副产物,含有丰富的碳水化合物等营养物质成分及花青素、多酚等功能活性成分,具有较强的再加工转化及利用的潜力。目前对于该副产物的开发利用尚处于初步探索阶段,鲜见相关产品开发的研究报道。薯类含有大量淀粉,对酿制啤酒用大米等发酵辅料具有很强的替代潜力。张赟彬等[31]研究表明,添加马铃薯粉作为辅料可酿造高氨基酸营养深色啤酒,且各项指标均符合国家标准的要求。姚立华等[32]采用两次喂饭法,以新鲜马铃薯为辅料进行黄酒酿造的研究,结果表明,所酿造的黄酒符合国家黄酒标准,且游离氨基酸含量是普通黄酒的1.2~2.5倍。紫色马铃薯冻融分离汁液除了含有一定量的可发酵糖类物质外,还有丰富的花青素和多酚。本研究将紫色马铃薯酶解汁液作为辅料加入麦芽汁中,探讨添加马铃薯酶解汁液发酵较强抗氧化活性浓色啤酒的可行性。结果表明,添加紫色马铃薯酶解汁液可作为辅料发酵具特色风味的浓色啤酒。但在试验中发现,啤酒酵母对马铃薯酶解汁液的转化利用能力弱于麦芽汁,添加过多的马铃薯酶解汁液会导致发酵度下降。这可能与紫色马铃薯酶解汁液中碳水化合物组成与麦芽汁差异有关,将其加入麦芽汁改变了可发酵糖及α−氨基氮的含量及组成。因此,下一步将对紫色马铃薯酶解汁液碳水化合物、氨基酸种类及其含量进行分析,通过外源添加优化碳氮源以提高紫色马铃薯啤酒的发酵度。另一方面,还可通过筛选适合紫色马铃薯酶解汁液发酵的啤酒酵母菌种,进一步减少麦芽汁用量,提高发酵浓色啤酒的综合质量。

    紫色马铃薯全粉分离酶解汁液制备浓色啤酒的最佳主发酵条件为:混合麦芽汁浓度16°P,紫色马铃薯酶解汁液添加体积分数为25%,初始pH 6.5,M21酵母接种量(φ)为2%,15 ℃发酵10 d,所得浓色啤酒色泽晶莹、色若琥珀,酒香协调、入口柔顺,酒精度为5.83%,感官评分86.9分,还原糖为18.69 mg/mL,色度为37.71 EBC,总酸为15.6 mL/L,均符合国标相关指标要求。酿造的紫色马铃薯浓色啤酒含有总酚、绿原酸和花青素等抗氧化成分,具有较强的体外抗氧化活性。

  • 图  1   土壤样本稀释曲线

    Figure  1.   Soil sample rarefaction curve

    图  2   生物炭不同施加量处理在门水平上对土壤细菌相对丰度的影响

    Figure  2.   Effects of different biochar application amounts on the relative abundance of soil bacteria at phylum level

    图  3   生物炭不同施加量处理在属水平上对土壤细菌相对丰度的影响

    Figure  3.   Effect of different biochar application amounts on the relative abundance of soil bacteria at the genus level

    图  4   土壤细菌群落结构的非度量多维尺度(NMDS)分析

    Figure  4.   Non-metric multi-dimensional scaling (NMDS) analysis of soil bacterial community structure

    图  5   门水平上的土壤细菌相对丰度聚类分析

    Figure  5.   Cluster analysis of relative abundance of soil bacteria at phylum level

    表  1   基于OTU的土壤细菌群落多样性指数1)

    Table  1   Diversity index of soil bacterial community based on OTU

    品种
    Variety
    处理
    Treatment
    香农指数
    Shannon index
    辛普森指数
    Simpson index
    Chao1指数
    Chao1 index
    ACE指数
    ACE index
    黄华占
    Huanghuazhan(Hua)
    CK 8.966±0.05abA 0.989±0.006aA 3480.75±517.08bA 3 563.55±537.94bA
    Tr1 9.706±0.45aA 0.995±0.002aA 4179.17±316.40aA 4 339.96±213.84aA
    Tr2 8.091±1.24bA 0.969±0.022aA 3490.21±836.31bB 3 586.29±830.62bA
    农香32
    Nongxiang32(N)
    CK 8.921±0.30aA 0.979±0.004aA 3866.23±347.77aA 3 951.35±380.68aA
    Tr1 9.348±0.04aA 0.984±0.006aA 4044.71±157.98aA 4128.83±192.08aA
    Tr2 8.671±0.19aA 0.984±0.006aA 3468.91±569.14aB 3538.57±588.43aA
    五常香稻
    Wuchangxiangdao(Wu)
    CK 8.683±0.14aA 0.979±0.005aA 3816.22±187.40aA 3946.03±228.30aA
    Tr1 9.253±0.66aA 0.987±0.007aA 4191.22±353.26aA 4300.22±318.69aA
    Tr2 8.521±0.70aA 0.986±0.005aA 3235.06±789.02aB 3334.52±839.40aA
    湘晚籼17
    Xiangwanxian 17(X)
    CK 8.424±1.89aA 0.976±0.026aA 3518.03±797.80aA 3655.60±744.40aA
    Tr1 9.023±0.35aA 0.979±0.005aA 4045.54±289.53aA 4121.37±284.28aA
    Tr2 8.931±0.64aA 0.983±0.004aA 3832.92±747.80aAB 3947.94±753.74aA
    象牙香占
    Xiangyaxiangzhan(Ya)
    CK 8.651±1.24aA 0.975±0.021aA 3561.74±695.16aA 3598.91±691.79aA
    Tr1 8.988±0.09aA 0.972±0.004aA 4074.37±52.38aA 4234.22±5.95aA
    Tr2 8.956±0.54aA 0.987±0.005aA 3696.07±627.56aAB 3787.12±622.64aA
    玉针香
    Yuzhenxiang(Yu)
    CK 6.708±1.00bB 0.919±0.047bB 3024.95±367.96bA 3169.58±292.43bA
    Tr1 8.682±0.14aA 0.980±0.001aA 3637.90±127.86abA 3735.90±125.70abA
    Tr2 8.738±0.73aA 0.984±0.005aA 4746.21±1530.11aA 4073.96±257.00aA
     1) 表中数据为平均值±标准差,n=3;同列数据后的不同小写字母表示同一水稻品种在不同生物炭施加量处理下差异显著;同列数据后的不同大写字母表示同一生物炭施加量处理下不同水稻品种间差异显著(P<0.05,Duncan’s法)
     1) Data are means±standard deviations, n=3; Different lowercase letters in the same column indicate significant differences of the same variety among different biochar treatments, different capital letters in the same column indicate significant differences among different rice varieties under the same biochar treatment(P<0.05, Duncan’s test)
    下载: 导出CSV
  • [1]

    VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Efects of bio-char from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant Soil, 2010, 327: 235-246. doi: 10.1007/s11104-009-0050-x

    [2] 王丽渊, 丁松爽, 刘国顺. 生物质炭土壤改良效应研究进展[J]. 中国土壤与肥料, 2014(3): 1-6.
    [3] 荣飞龙, 蔡正午, 覃莎莎, 等. 酸性稻田添加生物炭对水稻生长发育及产量的影响: 基于5年大田试验[J]. 生态学报, 2020, 40(13): 4413-4424.
    [4]

    KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75-86. doi: 10.1007/BF02183056

    [5] 南丽丽, 谭杰辉, 郭全恩. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报, 2020, 40(23): 8582-8592.
    [6]

    PURAKAYASTHA T J, DAS K C, GASKIN J, et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils[J]. Soil and Tillage Research, 2016, 155(4): 107-115.

    [7]

    AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms: Review and research needs[J]. European Journal of Soil Science, 2013, 64(4): 379-390. doi: 10.1111/ejss.12064

    [8] 张秀, 夏运生, 尚艺婕, 等. 生物质炭对镉污染土壤微生物多样性的影响[J]. 中国环境科学, 2017, 37(1): 252-262. doi: 10.3969/j.issn.1000-6923.2017.01.032
    [9]

    SHANG J Y, ZHOU S Y, WANG Z H, et al. Effects of rainfall on the total number of bacteria and the composition of culturable bacteria in Qinhuangdao West Beach[J]. Microbiology China, 2016, 43(6): 1227-1234.

    [10] 雷旭, 李冰, 李晓, 等. 复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5): 1373-1381.
    [11]

    MUHAMMAD N, DAI Z M, XIAO K C, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226/227: 270-278. doi: 10.1016/j.geoderma.2014.01.023

    [12]

    DOAN T T, BOUVIER C, BETTAREL Y, et al. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems[J]. Applied Soil Ecology, 2014, 73: 78-86.

    [13]

    STEINER C, TEIXEIRA W G, LEHMANN J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil[J]. Plant and Soil, 2007, 291: 275-290.

    [14] 朱金山, 张慧, 马连杰, 等. 不同沼灌年限稻田土壤微生物群落分析[J]. 环境科学, 2018, 39(5): 2400-2411.
    [15]

    DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354: 311-324.

    [16] 常栋, 马文辉, 张凯, 等. 生物炭基肥对植烟土壤微生物功能多样性的影响[J]. 中国烟草学报, 2018, 24(6): 58-66.
    [17] 周凤, 耿增超, 许晨阳, 等. 生物炭用量对(土娄)土微生物量及碳源代谢活性的影响[J]. 植物营养与肥料学报, 2019, 25(8): 1277-1289. doi: 10.11674/zwyf.18276
    [18]

    LESAULNIER C, PAPAMICHAIL D, MCCORKLE O S, et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen[J]. Environmental Microbiology, 2008, 10(4): 926-941. doi: 10.1111/j.1462-2920.2007.01512.x

    [19]

    HOEFEL D, MONIS P T, GROOBY W L, et al. Profiling bacterial survival through a water treatment process and subsequent distribution system[J]. Journal of Applied Microbiology, 2005, 99(1): 175-186.

    [20]

    ANSOLA G, ARROYO P, SÁENZ DE MIERA L E, et al. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands[J]. Science of the Total Environment, 2014, 473/474(1): 63-71.

    [21]

    CHAUDHRY V, REHMAN A, MISHRA A, et al. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments[J]. Microbial Ecology, 2012, 64(2): 450-460. doi: 10.1007/s00248-012-0025-y

    [22] 宋宇, 王鹏, 韦月平. 不同稻田共作模式对土壤细菌群落结构的影响[J]. 西北农业学报, 2020, 29(2): 216-223. doi: 10.7606/j.issn.1004-1389.2020.02.007
    [23] 周佳, 周灵芝, 劳承英, 等. 短期不同耕作方式对水稻根际土壤细菌群落结构多样性的影响[J]. 南方农业学报, 2020, 51(10): 2401-2411. doi: 10.3969/j.issn.2095-1191.2020.10.011
    [24] 毛立晖. 野生稻内生细菌群落结构和多样性的研究[D]. 南昌: 南昌大学, 2018.
    [25] 唐涛涛. 不同类型秸秆厌氧共代谢降解污泥中多环芳烃的效能及机制研究[D]. 贵阳: 贵州大学, 2019.
    [26] 冯慧琳, 徐辰生, 何欢辉, 等. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学, 2021, 42(1): 422-432.
    [27] 朱孟涛, 刘秀霞, 王佳盟, 等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1505-1516.
    [28] 伏云珍, 马琨, 李倩, 等. 马铃薯| | 玉米间作对土壤细菌多样性的影响[J]. 中国生态农业学报(中英文), 2020, 28(11): 1715-1725.
  • 期刊类型引用(3)

    1. 任志超,李想,李先锋,毋丽丽,王景,彭志良,刘国顺,殷全玉. 生物炭对黑胫病抗性不同烤烟品种根际土壤真菌群落结构的影响. 河南农业科学. 2024(01): 105-115 . 百度学术
    2. 李澳,任志超,李想,李彦周,王景,穆耀辉,刘国顺,殷全玉. 生物炭对不同黑胫病抗性烤烟品种根际土壤细菌群落结构的影响. 山东农业科学. 2024(10): 102-112+126 . 百度学术
    3. 胡云,刘金泉,李明,王雪玉,张清梅,刘利平. 生物炭对连作设施黄瓜根际细菌丰度的影响. 分子植物育种. 2023(07): 2396-2402 . 百度学术

    其他类型引用(3)

图(5)  /  表(1)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  9
  • PDF下载量:  314
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-08-16
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-05-09

目录

/

返回文章
返回