王文娟, 李智博, 林晨俞, 等. 木薯SAP11基因的功能分析[J]. 华南农业大学学报, 2024, 45(4): 495-504. DOI: 10.7671/j.issn.1001-411X.202310017
    引用本文: 王文娟, 李智博, 林晨俞, 等. 木薯SAP11基因的功能分析[J]. 华南农业大学学报, 2024, 45(4): 495-504. DOI: 10.7671/j.issn.1001-411X.202310017
    WANG Wenjuan, LI Zhibo, LIN Chenyu, et al. Functional analysis of SAP11 gene in cassava[J]. Journal of South China Agricultural University, 2024, 45(4): 495-504. DOI: 10.7671/j.issn.1001-411X.202310017
    Citation: WANG Wenjuan, LI Zhibo, LIN Chenyu, et al. Functional analysis of SAP11 gene in cassava[J]. Journal of South China Agricultural University, 2024, 45(4): 495-504. DOI: 10.7671/j.issn.1001-411X.202310017

    木薯SAP11基因的功能分析

    基金项目: 国家自然科学基金(32272043);海南省自然科学基金(323RC538);中国热带农业科学院基本科研业务费(1630052022008);海南省研究生创新科研课题(Qhys2022-85)
    详细信息
      作者简介:

      王文娟,硕士研究生,主要从事植物逆境生物学研究,E-mail: 418601956@qq.com

      通讯作者:

      李淑霞,副研究员,博士,主要从事植物抗逆生物学研究,E-mail: lishuxia@itbb.org.cn

      于晓惠,副教授,博士,主要从事植物−病原菌互作研究,E-mail: xiaohuiyu@hainanu.edu.cn

      阮孟斌,研究员,博士,主要从事热带作物性状形成的分子遗传基础研究,E-mail: ruanmengbin@itbb.org.cn

    • 中图分类号: S3;S533

    Functional analysis of SAP11 gene in cassava

    • 摘要:
      目的 

      木薯Manihot esculenta Crantz是全球热带地区重要的粮食作物和经济作物,在生长发育过程中极易遭受低温、干旱、盐碱等非生物胁迫而导致减产。胁迫相关蛋白(Stress-associated protein,SAP)是一类新型的A20/AN1锌指蛋白,在模式作物应对多种非生物胁迫过程中发挥重要作用。目前,SAP基因在木薯应对非生物胁迫中的生物学功能尚不明确。本研究旨在分析木薯SAP家族成员的蛋白结构特征和表达模式,以及MeSAP11的互作蛋白,为进一步解析该家族基因在木薯抗逆中的功能提供理论支撑。

      方法 

      利用生物信息学技术对木薯SAP家族成员的进化关系、蛋白基序信息以及时空表达模式开展系统分析。同时,通过qRT-PCR研究各基因成员在不同组织中的特异表达以及对不同非生物胁迫的响应。进一步运用酵母双杂交结合高通量测序技术获得与MeSAP11相互作用的蛋白及对应生物学通路。

      结果 

      木薯SAP基因家族共6个大类16个成员,该家族成员在木薯根部和叶片中表达量较高,部分家族成员的表达在低温和盐胁迫中显著上调,在干旱、钾饥饿和氮饥饿显著下调。MeSAP11的表达受不同胁迫条件的显著调控,亚细胞定位结果表明MeSAP11蛋白主要定位在细胞核。利用酵母双杂交筛库技术筛选到256个与MeSAP11互作的蛋白,KEGG分析表明这些互作基因主要参与蛋白泛素化降解、内质网蛋白质加工通路等途径,暗示MeSAP11可能通过上述通路发挥功能。

      结论 

      木薯SAP 家族大部分成员显著响应低温、干旱、高盐以及缺氮、缺钾胁迫,研究结果为进一步研究MeSAP11在木薯响应非生物胁迫过程中的功能并解析其调控网络奠定了基础。下一步将把MeSAP11基因列为调控非生物逆境变化的候选基因开展深入研究。

      Abstract:
      Objective 

      Cassava is an important food and economic crop in tropical regions worldwide, and it is highly susceptible to yield reduction due to non-biological stresses such as low temperature, drought, and salinity during its growth and development. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that play important roles in the response of model crops to various non-biological stresses. The biological functions of SAPs in cassava’s response to non-biological stresses are not yet clear. This study aims to analyze the protein structure characteristics and expression patterns of the cassava SAPs, as well as the interacting proteins of MeSAP11, and provide theoretical support for further understanding the function of cassava SAPs in response to abiotic stresses.

      Method 

      Bioinformatics techniques were used to systematically analyze the evolutionary relationships, protein motif information, and spatiotemporal expression patterns of the cassava SAPs. Additionally, qRT-PCR was used to study the specific expression of each gene member in different tissues and their response to abiotic stresses. Furthermore, yeast two-hybrid combined with high-throughput sequencing technology was used to identify the proteins interacting with MeSAP11 and their corresponding biological pathways.

      Result 

      The cassava SAP gene family consisted of six major classes and 16 members. The expression levels of these family members were higher in cassava roots and leaves. The expressions of several family members were significantly up-regulated by low temperature and salt stress, and significantly down-regulated by drought, potassium starvation and nitrogen starvation. The expression of MeSAP11 was significantly regulated under different stress conditions, and subcellular localization results indicated that the MeSAP11 protein was mainly located in the nucleus. Using yeast two-hybrid screening, 256 proteins were identified to interact with MeSAP11, and KEGG analysis indicated that these interacting genes are mainly involved in protein ubiquitination degradation and endoplasmic reticulum protein processing pathways, suggesting that MeSAP11 may function through these pathways.

      Conclusion 

      The majority of the cassava SAPs are significantly regulated by low temperature, drought, high salinity, nitrogen deficiency, and potassium deficiency stresses. These results lay a theoretical fundation for the function exploration of MeSAP11 in cassava responding to abiotic stress, and point out a direction for further study to unravel its regulatory network. MeSAP11 is identified as a candidate gene for further in-depth research on regulating non-biological stress changes.

    • 图  1   SAP蛋白系统发育进化树

      Figure  1.   Phylogenetic evolution tree of SAP protein

      图  2   MeSAP蛋白结构与氨基酸序列分析

      A:保守结构域;B:A20/AN1保守基序序列;C:基因结构分析;D:MeSAP家族的氨基酸多序列比对

      Figure  2.   Structure and amino acid sequence analysis of MeSAP protein

      A: Conserved structural domain; B: A20/AN1 conserved motif sequence; C: Gene structure analysis; D: Amino acid multiple sequence alignment of MeSAP family

      图  3   木薯MeSAP基因家族表达的组织特异性分析

      “*”“**”分别表示其他组织与根在P < 0.05和P< 0.01水平差异显著(t检验)

      Figure  3.   Relative expression pattern of MeSAP in different tissues

      “*” and “**” indicate significant differences between other tissues and root at P < 0.05 and P < 0.01 levels, respectively (t test)

      图  4   木薯MeSAP基因家族对不同胁迫的响应分析

      “*”“**”分别表示处理与对照在P<0.05和P<0.01水平差异显著(t检验)

      Figure  4.   Response analysis of MeSAP gene family to different stresses

      “*” and “**” indicate significant differences between control and treatment at P<0.05 and P<0.01 levels, respectively (t test)

      图  5   MeSAP11-GFP融合蛋白的亚细胞定位

      Figure  5.   Subcellular localization of MeSAP11-GFP fusion proteins

      图  6   MeSAP11转录自激活分析及点对点验证互作蛋白

      Figure  6.   Transcriptional activation analysis and point-to-point verification of interacting proteins of MeSAP11

      图  7   MeSAP11互作蛋白的富集分析

      Figure  7.   Enrichment analysis of MeSAP11 interacting proteins

      表  1   木薯MeSAP家族蛋白的理化性质

      Table  1   Physical and chemical properties of MeSAP family protein in cassava

      名称
      Name
      氨基酸数量
      Number of
      amino acid
      相对分子质量
      Relative molecular
      weight
      理论等电点
      Theoretical
      PI
      不稳定系数
      Instability
      index
      蛋白疏水性
      Aliphatic
      index
      脂溶性系数
      Coefficient of fat
      solubility
      MeSAP1 136 15 101.02 8.02 46.82 57.50 −0.744
      MeSAP2 51 6 004.96 5.40 49.63 65.10 −0.698
      MeSAP3 135 14 950.05 8.93 52.51 61.48 −0.583
      MeSAP4 179 18 922.35 7.99 34.34 58.94 −0.380
      MeSAP5 173 18 308.73 8.68 25.06 58.21 −0.387
      MeSAP6 171 18 467.02 8.44 30.59 61.11 −0.480
      MeSAP7 179 19 204.52 9.01 44.22 52.91 −0.618
      MeSAP8 170 17 892.20 8.48 32.07 60.88 −0.284
      MeSAP9 156 17 325.93 8.90 49.73 58.21 −0.440
      MeSAP10 188 20 393.91 8.90 40.45 55.59 −0.545
      MeSAP11 176 18 929.37 9.13 54.33 60.40 −0.431
      MeSAP12 192 21 446.91 9.37 44.90 38.70 −0.782
      MeSAP13 173 18 534.17 8.44 26.36 66.53 −0.349
      MeSAP14 160 17 700.14 8.75 43.69 57.31 −0.589
      MeSAP15 293 32 420.86 8.65 46.82 62.56 −0.597
      MeSAP16 192 21 220.33 8.98 37.91 57.97 −0.588
      下载: 导出CSV

      表  2   MeSAP11酵母在cDNA文库的筛选结果

      Table  2   Screening of MeSAP11 yeast in cDNA library

      基因编号
      Gene number
      注释
      Annotation
      Manes.13G013400.1 小热休克蛋白HSP20
      Manes.11G058600.1 聚泛素3 Polyubiquitin 3
      Manes.17G035300.1 泛素样蛋白 Ubiquitin-like proteins
      Manes.16G032100.1 DNAJ同源家族C成员 DNAJ member C
      Manes.04G165900.1 GTPase激活蛋白 AGD11
      Manes.01G042200.1/
      Manes.13G124500.1
      热休克蛋白热应激转录因子
      Heat shock protein HSF24
      Manes.07G019300.1 聚泛素4 Polyubiquitin 4
      Manes.09G144100.1 转录因子 NAC47
      Manes.09G032800.1 转录因子 SPL9
      Manes.14G148600.1 I 类热休克蛋白
      Class I heat shock protein
      Manes.09G042800.1 未知蛋白 Uncharacterized protein
      Manes.12G078200.1 WD重复蛋白 WD protein
      Manes.15G054800.1 转换因子 Translation factor
      Manes.05G204500.1 一种配子表达的跨膜蛋白HAP8
      Manes.13G087500.1 蛋白激酶家族蛋白
      Protein kinase family proteins
      Manes.09G036800.1 泛素样蛋白 Ubiquitin-like proteins
      下载: 导出CSV
    • [1] 曹升, 陈江枫, 黄富宇, 等. 广西木薯产业现状分析及其发展建议[J]. 南方农业学报, 2021, 52(6): 1468-1476. doi: 10.3969/j.issn.2095-1191.2021.06.005
      [2]

      WANG W Q, FENG B X, XIAO J F, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nature Communications, 2014, 5: 5110. doi: 10.1038/ncomms6110

      [3]

      COBB J N, DECLERCK G, GREENBERG A, et al. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement[J]. Theoretical and Applied Genetics, 2013, 126(4): 867-887. doi: 10.1007/s00122-013-2066-0

      [4] 李智博, 董世满, 李淑霞, 等. 木薯SR45亚家族基因鉴定及表达[J]. 华南农业大学学报, 2022, 43(5): 20-28. doi: 10.7671/j.issn.1001-411X.202111032
      [5]

      GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China-Life Sciences, 2020, 63(5): 635-674. doi: 10.1007/s11427-020-1683-x

      [6]

      LANDI S, HAUSMAN J F, GUERRIERO G, et al. Poaceae vs. abiotic stress: Focus on drought and salt stress, recent insights and perspectives[J]. Frontiers in Plant Science, 2017, 8: 1214. doi: 10.3389/fpls.2017.01214

      [7] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6): 52-60. doi: 10.3969/j.issn.1006-8082.2016.06.012
      [8]

      MUKHOPADHYAY A, VIJ S, TYAJI A. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 6309-6314.

      [9] 崔江慧, 杨溥原, 常金华. 高粱GRF基因家族鉴定及在非生物胁迫下的表达分析[J]. 中国农业科技导报, 2021, 23(4): 37-46.
      [10]

      KOTHARI K S, DANSANA P K, GIRI J, et al. Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses[J]. Frontiers in Plant Science, 2016, 7: 1057.

      [11]

      KANG M, ABDELMAGEED H, LEE S, et al. AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5[J]. The Plant Journal, 2013, 76(3): 481-93. doi: 10.1111/tpj.12312

      [12]

      WANG W X, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta Medica, 2003, 218(1): 1-14.

      [13]

      DANSANA P K, KOTHARI K S, VIJ S, et al. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes[J]. Plant Cell Reports, 2014, 33(9): 1425-1440. doi: 10.1007/s00299-014-1626-3

      [14]

      HUANG J, WANG M M, JIANG Y, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance[J]. Genes, 2008, 420(2): 135-144.

      [15]

      VIJ S, TYAGI A. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis[J]. Molecular Genetics And Genomics, 2006, 276(6): 565-575. doi: 10.1007/s00438-006-0165-1

      [16]

      JIA H X, LI J B, ZHANG J, et al. Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica[J]. Tree Genetics & Genomes, 2016, 12(4): 78.

      [17]

      BILLAH S A, KHAN N Z, ALI W, et al. Genome-wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in potato (Solanum tuberosum L.)[J]. PLoS One, 2022, 17(8): e0273416. doi: 10.1371/journal.pone.0273416

      [18]

      HE X, XIE S, XIE P, et al. Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus[J]. Environmental and Experimental Botany, 2019, 165: 108-119. doi: 10.1016/j.envexpbot.2019.05.007

      [19]

      KANNEGANTI V, GUPTA A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice[J]. Plant Molecular Biology Reporter, 2008, 66(5): 445-462. doi: 10.1007/s11103-007-9284-2

      [20]

      HOZAIN M, ABDELMAGEED H, LEE J, et al. Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress[J]. Journal of Plant Physiology, 2012, 169(13): 1261-1270. doi: 10.1016/j.jplph.2012.04.007

      [21]

      BEN S R, MEYNARD D, BEN R W, et al. The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants[J]. Plant Cell Reports, 2015, 34(10): 1791-1806. doi: 10.1007/s00299-015-1825-6

      [22]

      LI J, SUN P, XIA Y, et al. A stress-associated protein, PtSAP13, from Populus trichocarpa provides tolerance to salt stress[J]. International Journal of Molecular Sciences, 2019, 20(22): 5782. doi: 10.3390/ijms20225782

      [23]

      FUENTES-BEALS C, VALDÉS-JIMÉNEZ A, RIADI G. Hidden Markov Modeling with HMMTeacher[J]. PLoS Computational Biology, 2022, 18(2): e1009703. doi: 10.1371/journal.pcbi.1009703

      [24]

      GOODSTEIN D M, SHU S, HOWSON R, et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(D1): D1178-D1186. doi: 10.1093/nar/gkr944

      [25]

      CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative tookit developed for interactive analyses of big biological data[J]. Molecular Plant Pathology, 2020, 13(8): 1194-1202.

      [26]

      KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054

      [27]

      SHARMA G, GIRI J, TYAGI A K. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis[J]. Plant Science, 2015, 237: 80-92. doi: 10.1016/j.plantsci.2015.05.011

      [28]

      DIXIT A R, DHANKHER O P. A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress[J]. PLoS One, 2011, 6(6): e20921. doi: 10.1371/journal.pone.0020921

      [29] 张子奇, 李可, 陈银华, 等. 木薯MeSAP13基因的克隆及其抗细菌性枯萎病功能鉴定[J]. 热带作物学报, 2022, 43(10): 1981-1988.
      [30]

      ZHAO P, WANG D D, WANG R Q, et al. Genome-wide analysis of the potato Hsp20 gene family: Identification, genomic organization and expression profiles in response to heat stress[J]. BMC Genomics, 2018, 19(1): 61. doi: 10.1186/s12864-018-4443-1

      [31]

      LI S X, CHENG Z H, LI Z B, et al. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava[J]. Theoretical and Applied Genetics, 2022, 135(3): 817-832. doi: 10.1007/s00122-021-04000-z

      [32]

      LIU G Z, LI X L, JIN S X, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(1): e86895. doi: 10.1371/journal.pone.0086895

      [33]

      KIM G D, CHO Y H, YOO S D. Regulatory functions of evolutionarily conserved AN1/A20-like Zinc finger family proteins in Arabidopsis stress responses under high temperature[J]. Biochemical and Biophysical Research Communications, 2015, 457(2): 213-220. doi: 10.1016/j.bbrc.2014.12.090

    图(7)  /  表(2)
    计量
    • 文章访问数:  148
    • HTML全文浏览量:  13
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-15
    • 网络出版日期:  2024-03-17
    • 发布日期:  2024-03-19
    • 刊出日期:  2024-07-09

    目录

      /

      返回文章
      返回