Current advances on the molecular mechanism of seed vigor
-
摘要:
种子活力是种子播种质量的重要指标,也是种用价值的主要组成部分,它是一个复杂的综合性状,表现为种子快速发芽、耐逆萌发、幼苗快速建成等性状。种子活力与种子发育、成熟、劣变、萌发和处理等环节都密切相关,且受到各种外界环境的影响。本文重点总结了调控种子活力形成、种子快速萌发、种子耐逆萌发、种子幼苗建成等方面的分子机理研究进展,并对今后研究方向进行了展望。
Abstract:Seed vigor is an important index of sowing quality and a major component of seed value. Seed vigor is a complex trait encompassing attributes such as rapid germination, high stress tolerance, and rapid seedling establishment. The regulation of seed vigor is involved in the processes of seed development, seed maturation, seed deterioration, seed germination, and seed treatments, and it is also influenced by various environment factors. In this review, the recent advances on the molecular mechanism of the regulation on the vigor establishment, rapid germination, stress tolerance, and seedling establishment were summarized, as well as the prospects of future research was discussed.
-
Keywords:
- Seed vigor /
- Seed germination /
- Seedling establishment /
- Molecular mechanism /
- Stress tolerance
-
-
表 1 近来报道的控制水稻种子发芽速度相关基因
Table 1 Recently reported genes involving in the speed of seed germination in rice
基因代号
Gene code基因全称
Gene full name基因功能
Gene function参考文献
ReferenceOsIAGLU Indole-3-acetate beta-glucosyltransferase 通过IAA和ABA互作影响OsABIs表达调控种子活力 [26] OsHIPL1 HIPL1 protein 通过ABA信号途径调控种子活力 [27] OsRACK1A WD repeat-containing protein 通过调控ABA和 H2O2含量,并两者相互作用调控种子萌发 [28] OsIPMS1 2-Isopropylmalate synthase B 通过影响氨基酸含量、GA合成和TCA循环调控种子活力 [29] OsCDP3.10 Cupin domain containing protein 通过影响氨基酸含量、促进H2O2积累调控种子活力 [30] OsPK5 Pyruvate kinase 通过影响糖酵解、糖含量、能量水平以及 GA/ABA平衡调控种子活力 [31] OsOMT 2-Oxoglutarate/malate translocator 通过影响氨基酸含量、糖酵解和TCA循环调控种子活力 [32] 表 2 近来报道的控制种子耐逆萌发相关基因
Table 2 Recently reported genes involving in seed germination under stress conditions
基因代号
Gene code基因全称
Gene full name基因功能
Gene function参考文献
ReferenceOsHAK21 Potassium transporter 通过改变K+、Na+吸收以及ABA和ROS含量调控种子耐盐萌发 [35] OsSAE1 AP2 domain containing protein 直接结合到OsABI5启动子区,通过ABA信号通路调控种子耐盐萌发 [36] RSM1 Radialis-like SANT/MYB 1 通过调控ABI5表达和下游ABA和胁迫响应基因表达调控种子耐盐萌发 [37] ABI4 Abscisic acid-insensitive 4 ABI4-RbohD/VTC2分子模块通过影响ROS代谢和细胞膜完整性调控种子耐盐萌发 [38] AtSRT2 Histone deacetylase 通过影响H2O2囊泡运输相关膜蛋白基因VAMP714启动子区的组蛋白乙酰化调控种子耐盐萌发 [39] qLTG3-1 LTP family protein precursor 通过组织弱化、降低对胚芽鞘生长的机械阻力,促进低温条件下种子萌发 [40] OsSAP16 C2H2 zinc finger protein 基因表达高低决定了种子耐低温萌发能力,但作用机制未知 [41] AtKP1 Plant-specific kinesin 与AtVDAC3特异性相互作用,参与低温条件下种子发芽过程中的呼吸调控作用 [42] HSP70-16 Heat shock protein 70 与AtVDAC3相互作用,激活AtVDAC3离子通道的开放,促进ABA从胚乳流向胚,从而抑制种子低温发芽 [43] SOM Zinc-finger protein AGL67-EBS复合物通过组蛋白H4K5乙酰化激活SOM表达,抑制高温胁迫下种子发芽 [44] OsTPP7 Glycosyl hydrolase 通过增加T6P运转,从而增强淀粉分解以驱动胚和胚芽鞘生长,提升种子耐淹萌发能力 [45] miR393a MicroRNA 促进胚芽鞘顶端游离吲哚乙酸的积累,从而抑制淹水条件下气孔发育和胚芽鞘伸长 [46] OsCBL10 Calcineurin B 通过影响Ca2+流量和α−淀粉酶活性调控种子耐淹萌发 [47] miR167 MicroRNA 通过miR167a-ARF-GH3分子模块影响IAA积累,调控种子耐淹萌发 [48] OsGF14h 14-3-3 protein 通过与转录因子OsHOX3和OsVP1互作,维持ABA和GA动态平衡,调控种子耐淹萌发 [49] OsUGT75A UDP-glucosyltransferase OsUGT75A 通过糖基化ABA和JA,影响种子和胚芽鞘中游离态ABA和JA含量介导淹水条件下胚芽鞘伸长 [50] TERF1 Ethylene-responsive transcription factor 1 通过激活GA信号通路,负向调控种子发芽过程中对甘露醇处理的敏感性 [51] FLOE1 Formin-like protein 在水合作用时相分离,使植物胚胎能够感知水压力,调控种子发芽最佳时间 [52] -
[1] SUN Q, WANG J H, SUN B Q. Advances on seed vigor physiological and genetic mechanisms[J]. Agricultural Sciences in China, 2007, 6(9): 1060-1066. doi: 10.1016/S1671-2927(07)60147-3
[2] FINCH-SAVAGE W E, BASSEL G W. Seed vigour and crop establishment: Extending performance beyond adaptation[J]. Journal of Experimental Botany, 2016, 67(3): 567-591. doi: 10.1093/jxb/erv490
[3] PELLIZZARO A, NEVEU M, LALANNE D, et al. A role for auxin signaling in the acquisition of longevity during seed maturation[J]. The New Phytologist, 2020, 225(1): 284-296. doi: 10.1111/nph.16150
[4] FAROOQ M, SIDDIQUE K H M, REHMAN H, et al. Rice direct seeding: experiences, challenges and opportunities[J]. Soil & Tillage Research, 2011, 111(2): 87-98.
[5] CHEN C, HE B, LIU X, et al. Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) regulates starch biosynthesis and seed development via heterotetramer formation in rice (Oryza sativa L. )[J]. Plant Biotechnology Journal, 2020, 18(1): 83-95. doi: 10.1111/pbi.13173
[6] HUANG X, LU Z, WANG X, et al. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3[J]. The Plant Journal, 2016, 87(3): 305-317. doi: 10.1111/tpj.13202
[7] WANG X, ZHOU W, LU Z, et al. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant Science, 2015, 239: 200-208. doi: 10.1016/j.plantsci.2015.07.016
[8] SANO N, MASAKI S, TANABATA T, et al. Proteomic analysis of stress-related proteins in rice seeds during the desiccation phase of grain filling[J]. Plant Biotechnology, 2013, 30(2): 147-156. doi: 10.5511/plantbiotechnology.13.0207a
[9] HE D, YANG P. Proteomics of rice seed germination[J]. Frontiers in Plant Science, 2013, 4: 246.
[10] WANG W Q, LIU S J, SONG S Q, et al. Proteomics of seed development, desiccation tolerance, germination and vigor[J]. Plant Physiology and Biochemistry, 2015, 86: 1-15. doi: 10.1016/j.plaphy.2014.11.003
[11] SALVI P, VARSHNEY V, MAJEE M. Raffinose family oligosaccharides (RFOs): Role in seed vigor and longevity[J]. Bioscience Reports, 2022, 42(10): BSR20220198. doi: 10.1042/BSR20220198
[12] HOWELL K A, NARSAI R, CARROLL A, et al. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process[J]. Plant Physiology, 2009, 149(2): 961-980. doi: 10.1104/pp.108.129874
[13] SANO N, RAJJOU L, NORTH H M. Lost in translation: physiological roles of stored mRNAs in seed germination[J]. Plants, 2020, 9(3): 347. doi: 10.3390/plants9030347
[14] PENFIELD S. Seed dormancy and germination[J]. Current Biology, 2017, 27(17): R874-R878. doi: 10.1016/j.cub.2017.05.050
[15] BARRERO J M, MILLAR A A, GRIFFITHS J, et al. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds[J]. The Plant Journal, 2010, 61(4): 611-622. doi: 10.1111/j.1365-313X.2009.04088.x
[16] DING Z J, YAN J Y, LI G X, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA[J]. The Plant Journal, 2014, 79(5): 810-823. doi: 10.1111/tpj.12597
[17] LEE K, LEE H G, YOON S, et al. The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE4 in the control of seed germination[J]. Plant Physiology, 2015, 168(2): 677-689. doi: 10.1104/pp.15.00162
[18] LEE S, LEE M H, KIM J I, et al. Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response[J]. Plant and Cell Physiology, 2015, 56(1): 84-97. doi: 10.1093/pcp/pcu148
[19] SHU K, ZHANG H, WANG S, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. PLoS Genetics, 2013, 9(6): e1003577. doi: 10.1371/journal.pgen.1003577
[20] VAISTIJ F E, GAN Y, PENFIELD S, et al. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10866-10871.
[21] WOJTYLA Ł, LECHOWSKA K, KUBALA S, et al. Different modes of hydrogen peroxide action during seed germination[J]. Frontiers in Plant Science, 2016, 7: 66.
[22] BARBA-ESPIN G, DIAZ-VIVANCOS P, JOB D, et al. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach[J]. Plant, Cell & Environment, 2011, 34(11): 1907-1919.
[23] ORACZ K, BOUTEAU H E M, FARRANT J M, et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation[J]. The Plant Journal, 2007, 50(3): 452-465. doi: 10.1111/j.1365-313X.2007.03063.x
[24] VERMA G, MISHRA S, SANGWAN N, et al. Reactive oxygen species mediate axis-cotyledon signaling to induce reserve mobilization during germination and seedling establishment in Vigna radiata[J]. Journal of Plant Physiology, 2015, 184: 79-88. doi: 10.1016/j.jplph.2015.07.001
[25] CHANDRASEKARAN U, ZHAO X, LUO X, et al. Endosperm weakening: The gateway to a seed’ s new life[J]. Plant Physiology and Biochemistry, 2022, 178: 31-39. doi: 10.1016/j.plaphy.2022.02.016
[26] HE Y, ZHAO J, YANG B, et al. Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice[J]. Plant Biotechnology Journal, 2020, 18(9): 1933-1945. doi: 10.1111/pbi.13353
[27] HE Y, CHEN S, LIU K, et al. OsHIPL1, a hedgehog-interacting protein-like 1 protein, increases seed vigour in rice[J]. Plant Biotechnology Journal, 2022, 20(7): 1346-1362. doi: 10.1111/pbi.13812
[28] ZHANG D, CHEN L, LI D, et al. OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa L. )[J]. PLoS One, 2014, 9(5): e97120. doi: 10.1371/journal.pone.0097120
[29] HE Y, CHENG J, HE Y, et al. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice[J]. Plant Biotechnology Journal, 2019, 17(2): 322-337. doi: 10.1111/pbi.12979
[30] PENG L, SUN S, YANG B, et al. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice[J]. Plant Biotechnology Journal, 2022, 20(3): 485-498. doi: 10.1111/pbi.13731
[31] YANG B, CHEN M, ZHAN C, et al. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study[J]. Journal of Experimental Botany, 2022, 73(11): 3446-3461. doi: 10.1093/jxb/erac071
[32] LI W, YANG B, XU J, et al. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice[J]. The Plant Journal, 2021, 108(2): 478-491. doi: 10.1111/tpj.15455
[33] WANG Z, CAO H, SUN Y, et al. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation[J]. The Plant Cell, 2013, 25(1): 149-166. doi: 10.1105/tpc.112.108191
[34] WANG Z, CHEN F Y, LI X Y, et al. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1[J]. Nature Communications, 2016, 7: 13412. doi: 10.1038/ncomms13412
[35] HE Y, YANG B, HE Y, et al. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice[J]. The Plant Journal, 2019, 97(6): 1089-1104. doi: 10.1111/tpj.14181
[36] LI Y, ZHOU J, LI Z, et al. Salt and ABA response erf1 improves seed germination and salt tolerance by repressing ABA signaling in rice[J]. Plant Physiology, 2022, 189(2): 1110-1127. doi: 10.1093/plphys/kiac125
[37] YANG B, SONG Z, LI C, et al. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity[J]. PLoS Genetics, 2018, 14(12): e1007839. doi: 10.1371/journal.pgen.1007839
[38] LUO X, DAI Y, ZHENG C, et al. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress[J]. The New Phytologist, 2021, 229(2): 950-962. doi: 10.1111/nph.16921
[39] TANG W S, ZHONG L, DING Q Q, et al. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis[J]. The New Phytologist, 2022, 234(4): 1278-1293. doi: 10.1111/nph.18060
[40] FUJINO K, SEKIGUCHI H, MATSUDA Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12623-12628.
[41] WANG X, ZOU B, SHAO Q, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany, 2018, 69(3): 413-421. doi: 10.1093/jxb/erx413
[42] YANG X Y, CHEN Z W, XU T, et al. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature[J]. The Plant Cell, 2011, 23(3): 1093-1106. doi: 10.1105/tpc.110.082420
[43] ASHRAF M, MAO Q, HONG J, et al. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis[J]. Plant, Cell & Environment, 2021, 44(11): 3616-3627.
[44] LI P, ZHANG Q, HE D, et al. AGAMOUS-LIKE67 cooperates with the histone mark reader EBS to modulate seed germination under high temperature[J]. Plant Physiology, 2020, 184(1): 529-545. doi: 10.1104/pp.20.00056
[45] KRETZSCHMAR T, PELAYO M A, TRIJATMIKO K R, et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice[J]. Nature Plants, 2015, 1: 15124. doi: 10.1038/nplants.2015.124
[46] GUO F, HAN N, XIE Y, et al. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L. )[J]. Plant, Cell & Environment, 2016, 39(10): 2288-2302.
[47] YE N H, WANG F Z, SHI L, et al. Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies[J]. The Plant Journal, 2018, 94(4): 612-625. doi: 10.1111/tpj.13881
[48] LEE K W, CHEN J J W, WU C S, et al. Auxin plays a role in the adaptation of rice to anaerobic germination and seedling establishment[J]. Plant, Cell & Environment, 2023, 46(4): 1157-1175.
[49] SUN J, ZHANG G, CUI Z, et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nature Communications, 2022, 13: 5664. doi: 10.1038/s41467-022-33320-x
[50] HE Y, SUN S, ZHAO J, et al. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination[J]. Nature Communications, 2023, 14: 2296. doi: 10.1038/s41467-023-38085-5
[51] LIU H, YUAN L, GUO W, et al. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling[J]. Plant Science, 2022, 322: 111350. doi: 10.1016/j.plantsci.2022.111350
[52] DORONE Y, BOEYNAEMS S, FLORES E, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation[J]. Cell, 2021, 184(16): 4284-4298. doi: 10.1016/j.cell.2021.06.009
[53] OSTERLUND M T, HARDTKE C, WEI N, et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis[J]. Nature, 2000, 405(6785): 462-466. doi: 10.1038/35013076
[54] XU X, PAIK I, ZHU L, et al. Illuminating progress in phytochrome-mediated light signaling pathways[J]. Trends in Plant Science, 2015, 20(10): 641-650. doi: 10.1016/j.tplants.2015.06.010
[55] XU D, JIANG Y, LI J, et al. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7655-7660.
[56] LEIVAR P, QUAIL P H. PIFs: Pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1): 19-28. doi: 10.1016/j.tplants.2010.08.003
[57] SHI H, LYU M, LUO Y, et al. Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6482-6487.
[58] LU X D, ZHOU C M, XU P B, et al. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis[J]. Molecular Plant, 2015, 8(3): 467-478. doi: 10.1016/j.molp.2014.11.025
[59] SHEERIN D J, MENON C, ZUR OVEN-KROCKHAUS S, et al. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex[J]. The Plant Cell, 2015, 27(1): 189-201. doi: 10.1105/tpc.114.134775
[60] ZUO Z, LIU H, LIU B, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis[J]. Current Biology, 2011, 21(10): 841-847. doi: 10.1016/j.cub.2011.03.048
[61] LIU B, ZUO Z, LIU H, et al. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light[J]. Genes & Development, 2011, 25(10): 1029-1034.
[62] LIAN H L, HE S B, ZHANG Y C, et al. Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism[J]. Genes & Development, 2011, 25(10): 1023-1028.
[63] REN H, HAN J, YANG P, et al. Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4722-4731.
[64] LEE B D, CHA J Y, KIM M R, et al. Photoperiod sensing system for timing of flowering in plants[J]. BMB Reports, 2018, 51(4): 163-164. doi: 10.5483/BMBRep.2018.51.4.052
[65] LIN F, CAO J, YUAN J, et al. Integration of light and brassinosteroid signaling during seedling establishment[J]. International Journal of Molecular Sciences, 2021, 22(23): 12971. doi: 10.3390/ijms222312971
[66] WANG Z, REN Z, CHENG C, et al. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis[J]. Molecular Plant, 2020, 13(9): 1284-1297. doi: 10.1016/j.molp.2020.06.011
[67] CHENG H, LIANG Q, CHEN X, et al. Hydrogen peroxide facilitates Arabidopsis seedling establishment by interacting with light signalling pathway in the dark[J]. Plant, Cell & Environment, 2019, 42(4): 1302-1317.
[68] SUN S, WANG T, WANG L, et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. doi: 10.1038/s41467-018-04952-9
[69] XIONG Q, MA B, LU X, et al. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings[J]. The Plant Cell, 2017, 29(5): 1053-1072. doi: 10.1105/tpc.16.00981
[70] YU Z, MA J, ZHANG M, et al. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis[J]. Science Advances, 2023, 9(1): eade2493. doi: 10.1126/sciadv.ade2493
[71] RIGAL A, DOYLE S M, RITTER A, et al. A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception[J]. Plant Physiology, 2021, 187(1): 430-445. doi: 10.1093/plphys/kiab269
[72] PARK Y J, KIM J Y, PARK C M. SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis[J]. The Plant Cell, 2022, 34(7): 2671-2687. doi: 10.1093/plcell/koac124
[73] ZHANG L L, SHAO Y J, DING L, et al. XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis[J]. Science Advances, 2021, 7(19): eabf4427. doi: 10.1126/sciadv.abf4427
[74] ZENG Y, WANG J, HUANG S, et al. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1-ELF3-PIF4 pathway in Arabidopsis[J]. The New Phytologist, 2023, 239(4): 1253-1265. doi: 10.1111/nph.18776
[75] LIU H, ZHANG Y, LU S, et al. HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis[J]. The New Phytologist, 2021, 231(2): 646-660. doi: 10.1111/nph.17413
[76] NGHI K N, TONDELLI A, VALE G, et al. Dissection of coleoptile elongation in japonica rice under submergence through integrated genome-wide association mapping and transcriptional analyses[J]. Plant, Cell & Environment, 2019, 42(6): 1832-1846.
[77] NGHI K N, TAGLIANI A, MARIOTTI L, et al. Auxin is required for the long coleoptile trait in japonica rice under submergence[J]. New Phytologist, 2021, 229(1): 85-93. doi: 10.1111/nph.16781
[78] YIN C C, HUANG Y H, ZHANG X, et al. Ethylene-mediated regulation of coleoptile elongation in rice seedlings[J]. Plant, Cell & Environment, 2023, 46(4): 1060-1074.
[79] CAI G, KIM S C, LI J, et al. Transcriptional regulation of lipid catabolism during seedling establishment[J]. Molecular Plant, 2020, 13(7): 984-1000. doi: 10.1016/j.molp.2020.04.007
[80] CREPIN N, ROLLAND F. SnRK1 activation, signaling, and networking for energy homeostasis[J]. Current Opinion in Plant Biology, 2019, 51: 29-36. doi: 10.1016/j.pbi.2019.03.006
[81] BAENA-GONZALEZ E, SHEEN J. Convergent energy and stress signaling[J]. Trends in Plant Science, 2008, 13(9): 474-482. doi: 10.1016/j.tplants.2008.06.006
[82] HENNINGER M, PEDROTTI L, KRISCHKE M, et al. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment[J]. The Plant Cell, 2022, 34(1): 616-632. doi: 10.1093/plcell/koab270
[83] HUANG Z, YING J, PENG L, et al. A genome-wide association study reveals that the cytochrome b5 involved in seed reserve mobilization during seed germination in rice[J]. Theoretical and Applied Genetics, 2021, 134(12): 4067-4076. doi: 10.1007/s00122-021-03948-2