麻楝幼苗生长和生理特性对干旱胁迫的响应

    全红婷, 朱洁怡, 龙凤玲, 赵倩, 吴道铭, 曾曙才

    全红婷, 朱洁怡, 龙凤玲, 等. 麻楝幼苗生长和生理特性对干旱胁迫的响应[J]. 华南农业大学学报, 2025, 46(4): 1-9.
    引用本文: 全红婷, 朱洁怡, 龙凤玲, 等. 麻楝幼苗生长和生理特性对干旱胁迫的响应[J]. 华南农业大学学报, 2025, 46(4): 1-9.
    QUAN Hongting, ZHU Jieyi, LONG Fengling, et al. Responses of Chukrasia tabularis seedling growth and physiological characteristics to drought stress[J]. Journal of South China Agricultural University, 2025, 46(4): 1-9.
    Citation: QUAN Hongting, ZHU Jieyi, LONG Fengling, et al. Responses of Chukrasia tabularis seedling growth and physiological characteristics to drought stress[J]. Journal of South China Agricultural University, 2025, 46(4): 1-9.

    麻楝幼苗生长和生理特性对干旱胁迫的响应

    基金项目: 

    广东省林业科技创新项目(2022KJCX015)

    详细信息
      作者简介:

      全红婷,主要从事森林生态学研究,E-mail: 1627291486@qq.com

      通讯作者:

      曾曙才,主要从事森林生态学研究,E-mail: sczeng@scau.edu.cn

    • 中图分类号: S718.43

    Responses of Chukrasia tabularis seedling growth and physiological characteristics to drought stress

    • 摘要:
      目的 

      探讨干旱胁迫对麻楝Chukrasia tabularis生长及生理特性的影响,揭示麻楝幼苗适应干旱环境的生理响应机制。

      方法 

      以半年生麻楝幼苗为研究对象,设置4个处理:轻度干旱(田间持水量的65%~70%)、中度干旱(田间持水量的50%~55%)、重度干旱(田间持水量的35%~40%),并设置对照(田间持水量的80%~85%),测定麻楝幼苗的生长指标、光合参数、生理特性指标。

      结果 

      中度和重度干旱显著降低麻楝幼苗的株高增长、叶宽、叶长和叶面积(P<0.05),而轻度干旱促进根系生长,根长(1103.24 cm)和根体积(2.53 cm3)显著高于对照(P<0.05)。随着胁迫程度增加,麻楝幼苗的净光合速率、气孔导度、胞间CO2浓度和蒸腾速率以及叶绿素含量均呈先升后降趋势,且均在轻度干旱达到最大值。脯氨酸含量在重度干旱达到最大值,显著高于对照(P<0.05)。各干旱处理组可溶性蛋白、可溶性糖和丙二醛(MDA)含量,过氧化物酶(POD)和超氧化物歧化酶(SOD)活性与对照无显著差异。

      结论 

      65%~70%田间持水量有利于麻楝幼苗根系生长、生物量积累和光合作用效率提升,表明适度干旱总体上对麻楝幼苗生长有利。

      Abstract:
      Objective 

      To investigate the effects of drought stress on the growth and physiological characteristics of Chukrasia tabularis, and reveal the physiological response mechanism of C. tabularis seedlings to adapt to drought environments.

      Method 

      Taking half-year-old C. tabularis seedlings as the research subjects, four treatments were set up: Light drought (65%−70% of field water capacity), moderate drought (50%−55% of field water capacity), severe drought (35%−40% of field water capacity), and control (80%−85% of field water capacity). The growth indicators, photosynthetic parameters, and physiological characteristics of C. tabularis seedlings were measured.

      Result 

      Moderate and severe drought significantly reduced the plant height growth, leaf width, leaf length and leaf area of C. tabularis seedlings (P<0.05), while light drought promoted root growth. The root length (1103.24 cm ) and root volume (2.53 cm3) were significantly higher than those of the control (P<0.05). With the increase of stress intensity, the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, and chlorophyll content of C. tabularis seedlings all showed a trend of increasing and then decreasing, reaching their maximum values under light drought. The proline content reached its maximum value under severe drought, significantly higher than that in the control (P<0.05). The contents of soluble protein, soluble sugar and malondialdehyde (MDA), as well as the activities of peroxidase (POD) and superoxide dismutase (SOD) in all drought treatment groups were not significantly different from those in the control.

      Conclusion 

      A field water capacity of 65%−70% facilitates root growth, biomass accumulation, and enhances photosynthetic efficiency in C. tabularis seedlings, indicating that appropriate drought is generally advantageous for the growth of C. tabularis seedlings.

    • 图  1   干旱胁迫对麻楝幼苗叶绿素含量的影响

      CK为对照,LD为轻度干旱胁迫,MD为中度干旱胁迫,SD为重度干旱胁迫;相同指标柱子上方相同小写字母表示差异不显著(P>0.05,LSD法)。

      Figure  1.   Effect of drought stress on chlorophyll content in Chukrasia tabularis seedlings

      CK is control, LD is light drought stress, MD is moderate drought stress, and SD is severe drought stress. The same lowercase letters above the column of the same index indicate no significant difference. (P>0.05, LSD method).

      图  2   干旱胁迫对麻楝幼苗生理特性的影响

      CK为对照,LD为轻度干旱胁迫,MD为中度干旱胁迫,SD为重度干旱胁迫;各图中,柱子上方相同小写字母表示差异不显著(P>0.05,LSD法);脯氨酸含量、MDA含量及SOD活性以鲜质量为基准进行测定。

      Figure  2.   Effect of drought stress on the physiological characteristics of Chukrasia tabularis seedlings

      CK is control, LD is light drought stress, MD is moderate drought stress, and SD is severe drought stress. In each figure, the same lowercase letters above the column indicate no significant difference. (P>0.05, LSD method). The proline content, MDA content and SOD activity were determined based on fresh weight.

      图  3   干旱胁迫下麻楝幼苗各项指标的相关性热图

      颜色越深表示显著性越强,蓝色表示负相关,红色表示正相关(Pearson法);1:可溶性蛋白含量,2:POD活性,3:MDA含量,4:可溶性糖含量,5:脯氨酸含量,6:SOD总活性,7:地上部干质量,8:根部干质量,9:总生物量,10:株高增长量,11:地径增长量,12:根长,13:根表面积,14:平均直径,15:根体积,16:叶宽,17:叶长,18:叶面积,19:净光合速率,20:气孔导度,21:胞间CO2浓度,22:蒸腾速率,23:叶绿素a含量,24:叶绿素b含量,25:总叶绿素含量,26:类胡萝卜素含量。

      Figure  3.   Heat map of correlations between different indicators of Chukrasia tabularis seedlings under drought stress

      Deeper color indicates greater significance, blue color indicates negative correlation, red color indicates positive correlation (Pearson method). 1: Soluble protein content, 2: POD activity, 3: MDA content, 4: Soluble sugar content, 5: Proline content, 6: SOD total activity, 7: Shoot dry weight, 8: Root dry weight, 9: Total biomass, 10: Plant height growth, 11: Ground diameter growth, 12: Root length, 13: Root surface area, 14: The average diameter, 15: Root volume, 16: Leaf width, 17: Leaf length, 18: Leaf area, 19: Net photosynthetic rate, 20: Stomatal conductivity, 21: Intercellular CO2 concentration, 22: Transpiration rate, 23: Chlorophyll a content, 24: Chlorophyll b content, 25: Total chlorophyll content, 26: Carotenoid content.

      表  1   干旱胁迫对麻楝幼苗株高、地径和叶片形态的影响1)

      Table  1   Effects of drought stress on plant height, ground diameter and leaf morphology of Chukrasia tabularis seedlings

      处理
      Treatment
      株高增长量/cm
      Plant height growth
      地径增长量/cm
      Ground diameter growth
      叶宽/mm
      Leaf width
      叶长/mm
      Leaf length
      叶面积/mm2
      Leaf area
      CK 7.74±2.60a 1.52±0.64a 37.91±1.96a 42.18±4.64a 1242.61±201.69a
      LD 5.74±1.34ab 1.59±0.14a 39.62±3.58a 40.30±9.90a 1214.43±406.17a
      MD 3.64±0.61b 1.26±0.39a 30.63±3.63b 30.47±4.70b 696.48±197.67b
      SD 2.82±2.88b 1.27±0.24a 32.42±4.55b 30.02±1.39b 652.58±86.83b
       1) CK为对照,LD为轻度干旱胁迫,MD为中度干旱胁迫,SD为重度干旱胁迫;同列数据后相同小写字母表示差异不显著(P>0.05,LSD法)。
       1) CK is control, LD is light drought stress, MD is moderate drought stress, and SD is severe drought stress. The same lowercase letters after the same column data indicate no significant difference (P>0.05, LSD method).
      下载: 导出CSV

      表  2   干旱胁迫对麻楝幼苗根系形态的影响1)

      Table  2   Effects of drought stress on root morphology of Chukrasia tabularis seedlings

      处理
      Treatment
      根长/cm
      Root length
      平均直径/mm
      Mean diameter
      根表面积/cm2
      Root surface
      根体积/cm3
      Root volume
      CK 653.29±168.55b 0.60±0.07a 121.52±27.66b 1.82±0.50b
      LD 1103.24±270.62a 0.60±0.04a 167.96±34.61ab 2.53±0.71a
      MD 978.67±176.57ab 0.49±0.06b 169.24±53.89a 1.53±0.12b
      SD 904.40±331.78ab 0.45±0.04b 136.91±13.54ab 2.06±0.51ab
       1) CK为对照,LD为轻度干旱胁迫,MD为中度干旱胁迫,SD为重度干旱胁迫;同列数据后相同小写字母表示差异不显著(P>0.05,LSD法)。
       1) CK is control, LD is light drought stress, MD is moderate drought stress, and SD is severe drought stress. The same lowercase letters after the same column data indicate no significant difference (P>0.05, LSD method).
      下载: 导出CSV

      表  3   干旱胁迫对麻楝幼苗生物量分配的影响1)

      Table  3   Effect of drought stress on biomass allocation of Chukrasia tabularis seedlings

      处理
      Treatment
      地上部干质量/g
      Aboveground dry weight
      根部干质量/g
      Root dry weight
      总生物量/g
      Gross biomass
      CK 5.82±1.50a 2.08±0.81ab 7.90±2.24a
      LD 6.50±2.34a 2.37±0.81a 8.87±3.02a
      MD 3.67±0.96a 1.52±0.16b 5.19±1.03b
      SD 4.31±0.62a 2.22±0.43ab 6.54±0.95ab
       1) CK为对照,LD为轻度干旱胁迫,MD为中度干旱胁迫,SD为重度干旱胁迫;同列数据后相同小写字母表示差异不显著(P>0.05,LSD法)。
       1) CK is control, LD is light drought stress, MD is moderate drought stress, and SD is severe drought stress. The same lowercase letters after the same column data indicate no significant difference (P>0.05, LSD method).
      下载: 导出CSV

      表  4   干旱胁迫对麻楝幼苗光合气体交换的影响1)

      Table  4   Effect of drought stress on photosynthetic gas exchange in Chukrasia tabularis seedlings

      处理
      Treatment
      净光合速率/
      (μmol·m−2·s−1)
      Net photosynthetic rate
      气孔导度/
      (mmol·m−2·s−1)
      Stomatal conductivity
      胞间CO2浓度/
      (μmol·mol−1)
      Intercellular CO2 concentration
      蒸腾速率/
      (g·m−1·h−1)
      Transpiration rate
      CK 6.91±0.93a 0.07±0.02a 230.66±30.10ab 1.39±0.33a
      LD 7.32±1.53a 0.08±0.02a 240.38±27.77a 1.55±0.35a
      MD 7.39±0.51a 0.06±0.02a 153.13±100.08b 1.19±0.47a
      SD 5.31±0.47b 0.02±0.02b 61.89±31.91b 0.38±0.32b
       1) CK为对照,LD为轻度干旱胁迫,MD为中度干旱胁迫,SD为重度干旱胁迫;同列数据后相同小写字母表示差异不显著(P>0.05,LSD法)。
       1) CK is control, LD is light drought stress, MD is moderate drought stress, and SD is severe drought stress. The same lowercase letters after the same column data indicate no significant difference (P>0.05, LSD method).
      下载: 导出CSV
    • [1]

      VAN VLIET M T H, JONES E R, FLÖRKE M, et al. Global water scarcity including surface water quality and expansions of clean water technologies[J]. Environmental Research Letters, 2021, 16(2): 024020. doi: 10.1088/1748-9326/abbfc3

      [2]

      HAO Y, YUAN X, ZHANG M. Enhanced relationship between seasonal soil moisture droughts and vegetation under climate change over China[J]. Agricultural and Forest Meteorology, 2024, 358: 110258. doi: 10.1016/j.agrformet.2024.110258

      [3]

      FAROOQ M, WAHID A, ZAHRA N, et al. Recent advances in plant drought tolerance[J]. Journal of Plant Growth Regulation, 2024, 43(10): 3337-3369. doi: 10.1007/s00344-024-11351-6

      [4]

      BASSIOUNI M, MANZONI S, VICO G. Optimal plant water use strategies explain soil moisture variability[J]. Advances in Water Resources, 2023, 173: 104405. doi: 10.1016/j.advwatres.2023.104405

      [5]

      WOLF S, PAUL-LIMOGES E. Drought and heat reduce forest carbon uptake[J]. Nature Communications, 2023, 14(1): 6217. doi: 10.1038/s41467-023-41854-x

      [6] 王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792-1806. doi: 10.7606/j.issn.1000-4025.2020.10.1792
      [7]

      SELEIMAN M F, AL-SUHAIBANI N, ALI N, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects[J]. Plants, 2021, 10(2): 259. doi: 10.3390/plants10020259

      [8]

      SHEN J, ZHANG Y, ZHANG L, et al. Bioactivity-guided isolation of anti-inflammatory limonins from Chukrasia tabularis[J]. Food Science & Nutrition, 2022, 10(12): 4216-4225.

      [9] 张捷, 王青, 仲崇禄, 等. 生长基质和激素对麻楝嫩枝扦插生根的影响[J]. 植物研究, 2019, 39(3): 380-386. doi: 10.7525/j.issn.1673-5102.2019.03.008
      [10]

      ANDRADE C, FERRERES F, GOMES N G M, et al. Valorisation of the industrial waste of Chukrasia tabularis A. Juss: Characterization of the leaves phenolic constituents and antidiabetic-like effects[J]. Industrial Crops and Products, 2022, 185: 115100. doi: 10.1016/j.indcrop.2022.115100

      [11] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2015: 64-72.
      [12]

      SUN Y, WANG C, CHEN H Y H, et al. Response of plants to water stress: A meta-analysis[J]. Frontiers in Plant Science, 2020, 11: 978. doi: 10.3389/fpls.2020.00978

      [13]

      WU J, WANG J, HUI W, et al. Physiology of plant responses to water stress and related genes: A review[J]. Forests, 2022, 13(2): 324. doi: 10.3390/f13020324

      [14]

      MUNDIM F M, PRINGLE E G. Whole-plant metabolic allocation under water stress[J]. Frontiers in Plant Science, 2018, 9: 852. doi: 10.3389/fpls.2018.00852

      [15]

      CAO Y, YANG W, MA J, et al. An integrated framework for drought stress in plants[J]. International Journal of Molecular Sciences, 2024, 25(17): 9347. doi: 10.3390/ijms25179347

      [16]

      GAO J, ZHAO J, SHI P. Multiple response mechanisms of plants to drought stress[J]. Plants 2024, 13(20): 2918. doi: 10.3390/plants13202918

      [17]

      KOU X, HAN W, KANG J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions[J]. Frontiers in Plant Science, 2022, 13: 1085409. doi: 10.3389/fpls.2022.1085409

      [18]

      TYAGI V, SINGH S P, SINGH R D, et al. Chir pine and banj oak responses to pre-monsoon drought across slope aspects and positions in Central Himalaya.[J]. Environmental Monitoring and Assessment, 2023, 195(2): 258. doi: 10.1007/s10661-022-10860-9

      [19] 高冠龙, 冯起, 张小由, 等. 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究, 2018, 35(4): 929-937.
      [20]

      GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. doi: 10.1126/science.aaz7614

      [21] 王方琳, 柴成武, 赵鹏, 等. 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价[J]. 西北植物学报, 2021, 41(10): 1755-1765. doi: 10.7606/j.issn.1000-4025.2021.10.1755
      [22]

      HAGHPANAH M, HASHEMIPETROUDI S, ARZANI A, et al. Drought tolerance in plants: Physiological and molecular responses[J]. Plants, 2024, 13(21): 2962. doi: 10.3390/plants13212962

      [23]

      ZAIT Y, SHEMER O E, COCHAVI A. Dynamic responses of chlorophyll fluorescence parameters to drought across diverse plant families[J]. Physiologia Plantarum, 2024, 176(5): e14527. doi: 10.1111/ppl.14527

      [24] 王丽华, 余凌帆, 李欣欣, 等. 水分胁迫对3个品种油橄榄幼苗生理指标的影响[J]. 经济林研究, 2023, 41(3): 296-302.
      [25] 冯潇, 田玲, 尹群, 等. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 2024, 46(9): 57-67. doi: 10.12171/j.1000-1522.20230312
      [26] 姜鹏, 秦美欧, 蔡福, 等. 干旱-复水联动对东北春玉米光合生理与产量的影响[J]. 干旱气象, 2023, 41(2): 207-214. doi: 10.11755/j.issn.1006-7639(2023)-02-0207
      [27]

      OZTURK M, TURKYILMAZ UNAL B, GARCIA-CAPARROS P, et al. Osmoregulation and its actions during the drought stress in plants[J]. Physiologia Plantarum, 2021, 172(2): 1321-1335.

      [28] 席璐璐, 缑倩倩, 王国华, 等. 荒漠绿洲过渡带一年生草本植物对干旱胁迫的响应[J]. 生态学报, 2021, 41(13): 5425-5434.
      [29] 王硕, 贾潇倩, 何璐, 等. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展[J]. 中国农学通报, 2022, 38(29): 31-44. doi: 10.11924/j.issn.1000-6850.casb2021-1042
      [30]

      DU Y, ZHAO Q, CHEN L, et al. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiology and Biochemistry, 2020, 146: 1-12. doi: 10.1016/j.plaphy.2019.11.003

      [31] 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展[J]. 中国农业科技导报, 2019, 21(2): 19-25.
      [32]

      BANDURSKA H, NIEDZIELA J, PIETROWSKA-BOREK M, et al. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L. ) genotypes of different origin[J]. Plant Physiology and Biochemistry, 2017, 118: 427-437. doi: 10.1016/j.plaphy.2017.07.006

      [33]

      DE FREITAS P A, DE SOUZA MIRANDA R, MARQUES E C, et al. Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis[J]. Journal of Plant Growth Regulation, 2018, 37(3): 911-924. doi: 10.1007/s00344-018-9787-x

      [34] 秦岭, 陈二影, 张艳亭, 等. 干旱及复水对谷子脯氨酸积累和SiP5CR基因表达的影响[J]. 分子植物育种, 2018, 16(22): 7460-7465.
      [35] 郭迦南, 赵倚澎, 杨元植, 等. 超氧化物歧化酶在植物响应干旱、盐碱和冷害中的作用[J]. 植物研究, 2024, 44(4): 481-490. doi: 10.7525/j.issn.1673-5102.2024.04.001
      [36]

      BATOOL T, ALI S, SELEIMAN M F, et alPlant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities[J]. Scientific Reports, 2020, 10(1): 16975. doi: 10.1038/s41598-020-73489-z

      [37]

      ZHANG A, LIU M, GU W, et al. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of atractylodes lancea[J]. BMC Plant Biology, 2021, 21(1): 293. doi: 10.1186/s12870-021-03048-9

      [38] 李安, 舒健虹, 刘晓霞, 等. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021(6): 217-223.
      [39]

      HASHIMOTO Y, MAKITA N, DANNOURA M, et al. The composition of non-structural carbohydrates affects the respiration and morphology of tree fine roots in Japan Alps[J]. Rhizosphere, 2023, 26: 100705. doi: 10.1016/S2452-2198(23)00069-1

    • [1] 何智俐, 高爽, 李文彦, 李永涛, 杨行健, 孙岩. 去氢孕酮在水中的光化学转化过程及降解产物鉴定 [J]. 华南农业大学学报, 2023, 44(4): 495-503. DOI: 10.7671/j.issn.1001-411X.202204002
      [2] 巫晓峰, 肖劲邦, 沈留红, 姜思汛, 钱柏霖, 邓俊良, 傅宏庆, 左之才, 曹随忠, 余树民, 江涛. 中药组方“回乳康”对回乳期奶牛血清E、P4和TGF-β1含量的影响 [J]. 华南农业大学学报, 2017, 38(4): 69-75. DOI: 10.7671/j.issn.1001-411X.2017.04.012
      [3] 谭会泽 冯定远 沈思军 张守全 张常明. 复合蛋氨酸螯合微量元素对经产母猪血清相关生化指标及繁殖性能的影响 [J]. 华南农业大学学报, 2005, 26(1): 98-101. DOI: 10.7671/j.issn.1001-411X.2005.01.027
      [4] Naibi Sulaiman ABUBAKAR,傅伟龙,朱晓彤. 日粮中添加蛋氨酸锌对粤黄鸡繁殖性能和血浆中雌激素和孕酮水平的影响 [J]. 华南农业大学学报, 2003, 24(2): 67-72. DOI: 10.7671/j.issn.1001-411X.2003.02.019
      [5] 刘平祥,熊小妹,陈鹭江,谢德彪,邓舜洲. 铬对产蛋鸡生殖激素分泌的影响 [J]. 华南农业大学学报, 2001, 22(2): 69-72. DOI: 10.7671/j.issn.1001-411X.2001.02.021
      [6] 梁少东,施振旦. 氯丙嗪和赛更啶抑制粤黄鸡抱窝对繁殖性能的影响 [J]. 华南农业大学学报, 1997, (Z1)
      [7] 高萍,傅伟龙,梁瑞龙. 粤黄公鸡外周血浆黄体生成素和睾酮浓度的昼夜变化 [J]. 华南农业大学学报, 1997, (Z1)
      [8] 陈峰,施振旦,毕英佐,曹永长. 主动免疫血管活性肠肽对泰和鸡繁殖性能的影响 [J]. 华南农业大学学报, 1997, (Z1)
      [9] 江青艳 陈鹭江. 日粮中高碘对母鸡繁殖性能的影响 [J]. 华南农业大学学报, 1996, (3): 33-38.
      [10] 傅伟龙 陈鹭江. 母鸡在排卵周期和抱窝血浆“黄体生成素类似物... [J]. 华南农业大学学报, 1991, (A11): 1-4.
    图(3)  /  表(4)
    计量
    • 文章访问数:  18
    • HTML全文浏览量:  8
    • PDF下载量:  1
    • 被引次数: 0

    目录

      /

      返回文章
      返回