Effects of clonal integration on growth and photosynthesis of invasive weed Alternanthera philoxeroides and native A. sessilis
-
摘要:目的
在我国,外来入侵植物空心莲子草Alternanthera philoxeroides常与本地莲子草 A. sessilis同域分布且占据生态优势。本文探讨克隆整合与空心莲子草强竞争力间的关系。
方法通过同质园试验,对空心莲子草和莲子草先端与基端匍匐茎的连接处进行保持连接(克隆整合)与剪断处理(无克隆整合),分别测量不同克隆整合处理下2种植物先端分株、基端分株及整个克隆片段地上部分及根系的生长、光合性能及生物量分配情况,比较2种植物克隆整合能力的大小。
结果克隆整合处理下,空心莲子草先端分株的茎长、基端分株的叶片数及整个克隆片段的叶片数及茎长显著增加,细根数、总根数及一些光合指标(如光补偿点、气孔导度等)也显著提高;莲子草先端分株、基端分株及整个克隆片段的地上(下)生物量、总生物量、粗(细)根数及总根数也显著增加。克隆整合处理下空心莲子草先端分株、基端分株或整个克隆片段的地上(下)生物量、总生物量及一些光合指标(如净光合速率、蒸腾速率、气孔导度)显著高于莲子草。
结论空心莲子草和莲子草均能在一定程度上从克隆整合中受益,但空心莲子草的克隆整合能力要显著强于本地莲子草,能通过克隆整合作用挤占莲子草的空间生态位,从而形成自然生境中的竞争优势。
Abstract:ObjectiveThe alien invasive plant Alternanthera philoxeroides is often sympatric with native congener A. sessilis, but occupies an ecological advantage over A. sessilis in China. This study aimed to explore the relationship between clonal integration and the strong competitiveness of A. philoxeroides.
MethodIn a common garden experiment, the stolon connection between the apical and the basal ramets of A. philoxeroides and A. sessilis were left intact (clonal integration) or disconnected (without clonal integration), and the growth, photosynthesis, and biomass distribution of the apical ramets, the basal ramets, and the whole fragments of the two plants under different clonal integration treatments were examined to compare the clonal integration abilities of the two plants.
ResultThe stem length of the apical ramets, the number of leaves of the basal ramets as well as the leaf number and the stem length of the whole fragment of A. philoxeroides all significantly increased under clonal integration treatment. Moreover, the number of fine roots, total roots, and some photosynthetic indicators (such as light compensation point, stomatal conductivity, etc.) of A. philoxeroides all significantly increased under clonal integration treatment. Similarly, the aboveground/belowground biomass, the total biomass, the number of coarse/fine roots, and total number of roots of the apical ramets, the basal ramets, and the whole fragment of A. sessilis also significantly increased under clonal integration treatment. However, the aboveground/belowground biomass, the total biomass, and some photosynthetic indicators (such as net photosynthetic rate, transpiration rate, and stomatal conductance) of the apical ramets, the basal ramets, and the whole fragment of A. philoxeroides were significantly higher than those of A. sessilis under clonal integration treatment.
ConclusionBoth A. philoxeroides and A. sessilis can partly benefit from clonal integration, and A. philoxeroides has a stronger clonal integration ability than A. sessilis. A. philoxeroides might occupy the spatial niche through clonal integration, thus forming competitive advantage in natural habitats.
-
Keywords:
- Clonal integration /
- Invasive plant /
- Growth /
- Photosynthesis /
- Biomass
-
-
图 2 克隆整合处理对2种植物先端分株和基端分株地上部分生长及光合性能的影响
LN:叶片数,GD:地径,RN:分株数,SL:茎长,Pn:净光合速率,Gs:气孔导度,Ci:胞间CO2浓度,AQY:表观量子效率,Tr:蒸腾速率,LCP:光补偿点;各小图中,相同部位柱子上/下方的不同小写字母表示不同克隆整合处理和不同植物间差异显著 (P < 0.05,Duncan’s法)
Figure 2. Effects of clonal integration on the aboveground growth and photosynthesis of apical and basal ramets of two plants
LN: Leaf number, GD: Ground diameter, RN: Ramet number, SL: Stolon length, Pn: Net photosynthetic rate, Gs: Stomatal conductance, Ci: Intercellular CO2 concentration, AQY: Apparent quantum yield, Tr: Transpiration rate, LCP: Light compensation point; In each figure, different lowercase letters above/below the bars of the same part indicate significant differences among different clonal integration treatments and different plants (P < 0.05, Duncan’s test)
图 3 克隆整合处理对2种植物先端分株和基端分株根系分配及生物量分配的影响
各小图中,相同部位相同性状柱子上/下方的不同小写字母表示不同克隆整合处理和不同植物间差异显著 (P < 0.05,Duncan’s法)
Figure 3. Effects of clonal integration on root system allocation and biomass allocation of apical and basal ramets of two plants
In each figure, different lowercase letters above/below bars of the same part and the same trait indicate significant differences among different clonal integration treatments and different plants(P < 0.05, Duncan’s test)
图 4 克隆整合处理对2种植物整个克隆片段根系分配及生物量分配的影响
各小图中,相同性状柱子上下方的不同小写字母表示不同克隆整合处理和不同植物间差异显著 (P < 0.05,Duncan’s法)
Figure 4. Effects of clonal integration on root system and biomass allocation of the whole clonal fragments in two plants
In each figure, different lowercase letters above/below bars of the same trait indicate significant differences among different clonal integration treatments and different plants(P < 0.05, Duncan’s test)
图 5 克隆整合处理对2种植物整个克隆片段地上部分生长及光合的影响
各小图中,柱子上方的不同小写字母表示不同克隆整合处理和不同植物间差异显著 (P < 0.05,Duncan’s法)
Figure 5. Effects of clonal integration on growth and photosynthesis of aboveground part of clone fragments in two plants
In each figure, different lowercase letters above the bars indicate significant differences among different clonal integration treatments and different plants(P<0.05, Duncan’s test)
表 1 植物种类和克隆整合处理对空心莲子草和莲子草先端分株、基端分株及整个克隆片段生长及光合特性影响的双因素方差分析结果1)
Table 1 Two-way ANOVA results of effects of plant species and clonal integration on growth and photosynthesis of apical ramets, basal ramets, and whole clone fragments of Alternanthera philoxeroides and A. sessilis
因素
Variance来源
Source先端 Apical ramet 基端 Basal ramet 整株 Whole plant P C P×C P C P×C P C P×C 生长指标
Growth indexLN 0.50 0.02 6.86* 0.10 1.54 4.99* 0.38 0.36 8.07* SL 0.10 5.41* 1.35 0.00 4.59* 0.10 0.02 8.06* 0.67 GD 4.65* 0.97 0.23 4.81* 0.27 2.98 0.43 1.14 0.23 RN 1.96 1.96 4.84* 2.88 0.08 0.72 0.33 1.07 3.80 CRN 19.37** 5.87* 7.40* 32.14** 7.35* 5.84* 50.11** 13.02** 13.02** FRN 17.64** 18.81** 0.16 19.35** 10.47** 0.49 27.50** 21.19** 0.45 TRN 18.57** 17.99** 0.01 22.05** 10.98** 0.18 31.07** 21.80** 0.11 AB 7.92* 14.36** 5.35* 36.66** 3.34 2.17 24.81** 15.64** 6.60* BB 1.30 6.42* 0.63 17.84** 11.49** 2.50 5.41* 14.23** 0.45 TB 3.20 13.53** 2.30 41.45** 10.64** 3.65 17.86** 17.13** 3.86 RSR 11.02** 1.46 2.78 0.81 3.69 0.47 7.98* 1.35 3.22 光合指标
Photosynthetic
indexPn 22.24** 9.68* 0.00 5.69* 2.70 0.59 19.51** 0.00 0.46 Gs 29.09** 14.45** 0.65 1.39 5.61* 0.12 10.89* 13.62** 0.00 Ci 9.78* 9.35* 7.91* 8.19* 0.79 13.80** 14.00** 5.53* 17.17** Tr 9.86* 14.42** 0.07 1.74 3.83 0.03 4.59 8.08* 0.00 AQY 0.15 0.34 6.32* 0.00 5.35* 2.90 0.03 2.77 5.43* LCP 0.07 9.44* 0.59 1.02 2.29 7.68* 0.28 9.89* 5.99* 1) LN:叶片数,SL:茎长,GD:地径,RN:分株数,CRN:粗根数,FRN:细根数,TRN:总根数,AB:地上生物量,BB:地下生物量,TB:总生物量,RSR:根冠比,Pn:净光合速率,Gs:气孔导度,Ci:胞间CO2浓度,Tr:蒸腾速率,AQY:表观量子效率,LCP:光补偿点;P:植物种类,C:克隆整合;“*”和“**”分别表示植物种类和克隆整合处理在P < 0.05和P < 0.01水平影响显著(Duncan’s法)
1) LN: Leaf number, SL: Stolon length, GD: Ground diameter, RN: Ramet number, CRN: Coarse root number, FRN: Fine root number, TRN: Total root number, AB: Aboveground biomass, BB: Belowground biomass, TB: Total biomass, RSR: Root to shoot ratio, Pn: Net photosynthetic rate, Gs: Stomatal conductance, Ci: Intercellular CO2 concentration, Tr: Transpiration rate, AQY: Apparent quantum yield, LCP: Light compensation point; P: Plant species, C: Clonal integration; “*” and “**” indicate plant species and clonal integration have significant influences at P < 0.05 and P < 0.01 levels, respectively (Duncan’s method) -
[1] QIN H R, GUO W F, LI X Q. Density-dependent interactions between the nematode Meloidogyne incognita and the biological control agent Agasicles hygrophila on invasive Alternanthera philoxeroides and its native congener Alternantera sessilis[J]. BioControl, 2021, 66(6): 837-848. doi: 10.1007/s10526-021-10113-7
[2] LIU J, DONG M, MIAO S L, et al. Invasive alien plants in China: Role of clonality and geographical origin[J]. Biological Invasions, 2006, 8(7): 1461-1470. doi: 10.1007/s10530-005-5838-x
[3] YOU W H, YU D, LIU C H, et al. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability[J]. Hydrobiologia, 2013, 718(1): 27-39. doi: 10.1007/s10750-013-1596-4
[4] YOU W H, YU D, XIE D, et al. The invasive plant Alternanthera philoxeroides benefits from clonal integration in response to defoliation[J]. Flora, 2014, 209(11): 666-673. doi: 10.1016/j.flora.2014.09.008
[5] WANG Y J, MULLER-SCHARER H, VAN KLEUNEN M, et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives[J]. New Phytologist, 2017, 216(4): 1072-1078. doi: 10.1111/nph.14820
[6] SONG Y B, YU F H, KESER L H, et al. United we stand, divided we fall: A meta-analysis of experiments on clonal integration and its relationship to invasiveness[J]. Oecologia, 2013, 171(2): 317-327. doi: 10.1007/s00442-012-2430-9
[7] WANG P, LI H, PANG X Y, et al. Clonal integration increases tolerance of a phalanx clonal plant to defoliation[J]. Science of the Total Environment, 2017, 593: 236-241.
[8] 姜星星, 董必成, 罗芳丽, 等. 光强对比度对大米草克隆整合作用的影响[J]. 应用生态学报, 2014, 25(10): 2826-2832. doi: 10.13287/j.1001-9332.2014.0151 [9] 吕晓倩, 韩翠敏, 奚道国, 等. 克隆整合有利于喜旱莲子草入侵本地植物种群[J]. 江西农业大学学报, 2019, 41(6): 1093-1102. doi: 10.13836/j.jjau.2019128 [10] HUANG Q Q, LI X X, HUANG F F, et al. Nutrient addition increases the capacity for division of labor and the benefits of clonal integration in an invasive plant[J]. Science of the Total Environment, 2018, 643: 1232-1238. doi: 10.1016/j.scitotenv.2018.06.294
[11] WEI Q, LI Q, JIN Y, et al. Effects of clonal integration on photochemical activity and growth performance of stoloniferous herb Centella asiatica suffering from heterogeneous water availability[J]. Flora, 2019, 256: 36-42. doi: 10.1016/j.flora.2019.05.001
[12] 李晓霞, 沈奕德, 范志伟, 等. 异质性光照生境下克隆整合对外来入侵植物薇甘菊生长的影响[J]. 生态学杂志, 2018, 37(4): 974-980. doi: 10.13292/j.1000-4890.201804.039 [13] 王秋丽. 水分同质与异质对两种蔊菜克隆整合的影响[D]. 沈阳: 沈阳农业大学, 2020. [14] WANG P, ALPERT P, YU F H. Clonal integration affects allocation in the perennial herb Alternanthera philoxeroides in N-limited homogeneous environments[J]. Folia Geobotanica, 2017, 52(3/4): 303-315.
[15] YOU W H, FANG L X, XI D G, et al. Difference in capacity of clonal integration between terrestrial and aquatic Alternanthera philoxeroides in response to defoliation: Implications for biological control[J]. Hydrobiologia, 2018, 817(1): 319-328. doi: 10.1007/s10750-017-3418-6
[16] YU H H, FAN S F. Differences in physiological traits and resistances of Alternanthera philoxeroides after herbivory by generalists and specialists[J]. Aquatic Ecology, 2018, 52(4): 323-332. doi: 10.1007/s10452-018-9666-3
[17] PORTELA R, DONG B C, YU F H, et al. Effects of physiological integration on defense strategies against herbivory by the clonal plant Alternanthera philoxeroides[J]. Journal of Plant Ecology, 2019, 12(4): 662-672. doi: 10.1093/jpe/rtz004
[18] DONG B C, ZHANG L M, LI K Y, et al. Effects of clonal integration and nitrogen supply on responses of a clonal plant to short-term herbivory[J]. Journal of Plant Ecology, 2019, 12(4): 624-635. doi: 10.1093/jpe/rty057
[19] DONG B C, ALPERT P, ZHANG Q, et al. Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides[J]. Oecologia, 2015, 179(2): 393-403. doi: 10.1007/s00442-015-3338-y
[20] HE M Y, CHEN J W, DING J Q, et al. Differing interactions between an introduced beetle and a resident root nematode mediated by an invasive plant and its native congener[J]. Plant Ecology, 2018, 219(7): 803-812. doi: 10.1007/s11258-018-0835-1
[21] LIANG J F, YUAN W Y, GAO J Q, et al. Soil resource heterogeneity competitively favors an invasive clonal plant over a native one[J]. Oecologia, 2020, 193(1): 155-165. doi: 10.1007/s00442-020-04660-6
[22] 陈燕丽, 陈中义. 陆生型空心莲子草根的生长动态研究[J]. 江西农业学报, 2011, 23(2): 111-114. doi: 10.3969/j.issn.1001-8581.2011.02.035 [23] THORNLEY J H M. Mathematical models in plant physiology[M]. London: Academic Press, 1976: 86-110.
[24] YOU W H, FAN S F, YU D, et al. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments[J]. PLoS One, 2014, 9(5): e97246. doi: 10.1371/journal.pone.0097246
[25] WANG N, YU F H, LI P X, et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress[J]. Annals of Botany, 2008, 101(5): 671-678. doi: 10.1093/aob/mcn005
[26] ROILOA S R, RODRÍGUEZ-ECHEVERRÍA S, FREITAS H, et al. Developmentally-programmed division of labour in the clonal invader Carpobrotus edulis[J]. Biological Invasions, 2013, 15(9): 1895-1905. doi: 10.1007/s10530-013-0417-z
[27] 胡安安. 克隆劳动分工对入侵植物喜旱莲子草及其近缘种的影响[D]. 镇江: 江苏大学, 2020. [28] BUCKLEY T N, MOTT K A. Modelling stomatal conductance in response to environmental factors[J]. Plant, Cell and Environment, 2013, 36(9): 1691-1699. doi: 10.1111/pce.12140
[29] 赵楠, 朱高峰, 张扬, 等. 干旱绿洲区葡萄冠层上下方叶片气孔导度特征[J]. 兰州大学学报(自然科学版), 2021, 57(4): 510-517. [30] 高旭, 郭文锋, 项瑶, 等. 桉树枝瘿姬小蜂虫瘿对桉树光合生理的影响[J]. 中国森林病虫, 2019, 38(5): 18-23. doi: 10.3969/j.issn.1671-0886.2019.05.004 [31] 黄思倩. 空心莲子草在光照与养分异质性生境下的功能特化[D]. 雅安: 四川农业大学, 2014.