• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于4D label-free技术的水稻成熟种子蛋白质组学研究

梁文轩, 王月萍, 陈升杰, 李敏诗, 韩儒, 周玉亮

梁文轩, 王月萍, 陈升杰, 等. 基于4D label-free技术的水稻成熟种子蛋白质组学研究[J]. 华南农业大学学报, 2023, 44(5): 742-749. DOI: 10.7671/j.issn.1001-411X.202307015
引用本文: 梁文轩, 王月萍, 陈升杰, 等. 基于4D label-free技术的水稻成熟种子蛋白质组学研究[J]. 华南农业大学学报, 2023, 44(5): 742-749. DOI: 10.7671/j.issn.1001-411X.202307015
LIANG Wenxuan, WANG Yueping, CHEN Shengjie, et al. Proteomics study of mature rice seeds based on 4D label-free technology[J]. Journal of South China Agricultural University, 2023, 44(5): 742-749. DOI: 10.7671/j.issn.1001-411X.202307015
Citation: LIANG Wenxuan, WANG Yueping, CHEN Shengjie, et al. Proteomics study of mature rice seeds based on 4D label-free technology[J]. Journal of South China Agricultural University, 2023, 44(5): 742-749. DOI: 10.7671/j.issn.1001-411X.202307015

基于4D label-free技术的水稻成熟种子蛋白质组学研究

基金项目: 国家自然科学基金面上项目(31771888);“双一流”学科建设和提升专项(2021B10564001);广东省自然科学基金面上项目(2022A1515010843)。
详细信息
    作者简介:

    梁文轩,硕士研究生,主要从事水稻种子休眠研究,E-mail: 497726127@qq.com

    通讯作者:

    周玉亮,副教授,博士,主要从事水稻种子休眠和活力研究,E-mail: zhouyuliang@scau.edu.cn

  • 中图分类号: S511;S330

Proteomics study of mature rice seeds based on 4D label-free technology

  • 摘要:
    目的 

    从蛋白水平揭示水稻种子成熟的分子基础,探究调控水稻种子成熟的关键蛋白和代谢通路。

    方法 

    选用授粉后30 d的成熟水稻种子,利用4D label-free定量蛋白质组学进行质谱鉴定,通过生物信息学技术分析蛋白的亚细胞定位、结构域、GO注释和KEGG通路注释。

    结果 

    总共鉴定了3 484个种子成熟期的蛋白,相对分子质量大多在10 000~100 000之间,主要分布于细胞质、细胞核、叶绿体、线粒体和质膜上;结构域主要涉及蛋白质翻译的RNA识别基序和蛋白磷酸化修饰的蛋白激酶结构域;GO分析表明,成熟种子的蛋白主要参与了细胞过程和代谢过程,主要涉及催化活性和结合等功能,大多分布在细胞、细胞组分、细胞器和细胞膜等部位;KEGG分析发现,蛋白主要富集在核糖体、内质网中的蛋白质加工、氧化磷酸化和糖酵解等途径,推测蛋白质的翻译、加工和能量代谢是水稻种子成熟期的主要分子事件;进一步鉴定了脱落酸(Abscisic acid,ABA)信号和吲哚乙酸(Indoleacetic acid,IAA)代谢的相关蛋白,同时也发现了NAC(NAM、ATAF1/2 和 CUC2)家族的转录因子。

    结论 

    贮藏物质的积累和能量代谢是水稻种子成熟期的典型特征,ABA和IAA信号途径参与了种子成熟过程。

    Abstract:
    Objective 

    To reveal the molecular basis of rice seed maturation at the protein level, and explore the key proteins and metabolic pathways involved in regulating rice seed maturation.

    Method 

    The experiment used mature rice seeds at 30 days after pollination, and conducted mass spectrum identification using 4D label-free quantitative proteomics. Bioinformatics techniques were used to analyze the subcellular localization, domains, GO annotations, and KEGG pathway annotations of the proteins.

    Result 

    A total of 3 484 seed maturation proteins were identified, with most having a relative molecular mass between 10 000 and 100 000. They were mainly distributed in the cytoplasm, nucleus, chloroplasts, mitochondria, and plasma membrane. The protein domain mainly involved the RNA recognition motifs of protein translation and the protein kinase domains of protein phosphorylation modification. GO analysis showed that the proteins of mature seeds were mainly involved in cellular and metabolic processes, mainly related to catalytic activity and binding functions, and were mostly distributed in cell, cellular component, organelle, and cytomembrane. KEGG analysis revealed that proteins were mainly enriched in pathways such as ribosome, protein processing in endoplasmic reticulum, oxidative phosphorylation, and glycolysis. It was speculated that protein translation, processing, and energy metabolism were the main molecular events of rice seed maturation. Furthermore, proteins related to abscisic acid (ABA) signaling and indoleacetic acid (IAA) metabolism were identified, and transcription factors of the NAM, ATAF1/2 and CUC2 (NAC) family were also discovered.

    Conclusion 

    The accumulation of storage substances and energy metabolism are typical characteristics of rice seed maturation, and ABA and IAA signaling pathways are involved in the process of seed maturation.

  • 图  1   不同发育阶段水稻种子的形态

    图中比例尺长度为0.5 cm

    Figure  1.   Morphology of rice seeds at different development stages

    The scale bars in figure are 0.5 cm

    图  2   总蛋白SDS-PAGE电泳图

    M:蛋白Marker;1~3:蛋白样品

    Figure  2.   SDS-PAGE electrophoresis of total protein

    M: Protein marker; 1−3: Protein samples

    图  3   肽段的氨基酸数量分布图

    Figure  3.   Distribution of amino acid numbers in peptide

    图  4   蛋白相对分子质量分布图

    Figure  4.   Distribution of protein relative molecular mass

    图  5   亚细胞定位分析

    括号中数据为占比

    Figure  5.   Subcellular localization analysis

    The data in brackets are the proportion

    图  6   蛋白结构域分析

    Figure  6.   Protein domain analysis

    图  7   GO功能注释

    Figure  7.   GO function annotation

    图  8   KEGG通路注释

    Figure  8.   KEGG pathway annotation

    表  1   成熟水稻种子中的植物激素和转录因子相关蛋白

    Table  1   Proteins related to plant hormone and transcription factor in mature rice seeds

    蛋白
    Protein
    蛋白描述
    Protein description
    基因
    Gene
    平均强度
    Average intensity
    分类
    Classification
    A2ZAH5ABA受体 ABA receptorOsRCAR10415900脱落酸 ABA
    Q7XQP4丝氨酸/苏氨酸蛋白激酶
    Serine/threonine-protein kinase
    OsSAPK7294850脱落酸 ABA
    A2YDM7ABA受体 ABA receptorOsRCAR775716脱落酸 ABA
    Q8H3C8IAA−氨基酸水解酶
    IAA-amino acid hydrolase
    OsILL8296457生长素 Auxin
    Q2QZU4生长素抑制蛋白
    Auxin-repressed protein
    OsARP1278910生长素 Auxin
    Q84XG9IAA−氨基酸水解酶
    IAA-amino acid hydrolase
    OsILL1242487生长素 Auxin
    Q01IX6生长素氧化双加氧酶
    Dioxygenase for auxin oxidation
    DAO144843生长素 Auxin
    P27934α−淀粉酶 Alpha-amylaseOsAmy3E813397赤霉素 GA
    B9EZ51α−淀粉酶 Alpha-amylaseOsAmy4A604527赤霉素 GA
    Q8H484β−淀粉酶 Beta-amylaseOsBmy7204723赤霉素 GA
    Q8RUI4NAC转录因子
    NAC transcription factor
    Os01g09389001154207转录因子
    Transcription factor
    A2Y3Z4含有NAC-A/B结构域蛋白
    NAC-A/B domain-containing protein
    Os05g0373700457820转录因子
    Transcription factor
    A2Y4P5含NAC结构域蛋白
    NAC domain-containing protein
    OsNAC24362233转录因子
    Transcription factor
    Q6H8A9含NAC结构域蛋白
    NAC domain-containing protein
    OsNAC23200103转录因子
    Transcription factor
    A2WJP3含NAC结构域蛋白
    NAC domain-containing protein
    OsNAC20132343转录因子
    Transcription factor
    下载: 导出CSV
  • [1] 余泓, 王冰, 陈明江, 等. 水稻分子设计育种发展与展望[J]. 生命科学, 2018, 30(10): 1032-1037.
    [2]

    SERA Y, HANAMATA S, SAKAMOTO S, et al. Essential roles of autophagy in metabolic regulation in endosperm development during rice seed maturation[J]. Scientific Reports, 2019, 9: 18544. doi: 10.1038/s41598-019-54361-1.

    [3]

    YOU C C, CHEN L, HE H B, et al. iTRAQ-based proteome profile analysis of superior and inferior spikelets at early grain filling stage in japonica rice[J]. BMC Plant Biology, 2017, 17: 100. doi: 10.1186/s12870-017-1050-2.

    [4]

    ZHANG H D, CHEN J N, SHAN S L, et al. Proteomic profiling reveals differentially expressed proteins associated with amylose accumulation during rice grain filling[J]. BMC Genomics, 2020, 21: 714. doi: 10.1186/s12864-020-07105-9.

    [5]

    TAPPIBAN P, YING Y N, XU F F, et al. Proteomics and post-translational modifications of starch biosynthesis-related proteins in developing seeds of rice[J]. International Journal of Molecular Sciences, 2021, 22(11): 5901. doi: 10.3390/ijms22115901.

    [6]

    XU E S, CHEN M M, HE H, et al. Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice[J]. Frontiers in Plant Science, 2017, 7: 2006. doi: 10.3389/fpls.2016.02006.

    [7]

    CHU C, YAN N, DU Y M, et al. iTRAQ-based proteomic analysis reveals the accumulation of bioactive compounds in Chinese wild rice (Zizania latifolia) during germination[J]. Food Chemistry, 2019, 289: 635-644. doi: 10.1016/j.foodchem.2019.03.092

    [8]

    XU H B, LIAN L, JIANG M R, et al. Proteomic analysis reveals different involvement of proteins during the maintenance and release of rice seed dormancy[J]. Molecular Breeding, 2019, 39: 60. doi: 10.1007/s11032-019-0963-x.

    [9]

    TAN B C, LIM Y S, LAU S. Proteomics in commercial crops: An overview[J]. Journal of Proteomics, 2017, 169: 176-188. doi: 10.1016/j.jprot.2017.05.018

    [10]

    AN L, TAO Y, CHEN H, et al. Embryo-endosperm interaction and its agronomic relevance to rice quality[J]. Frontiers in Plant Science, 2020, 11: 587641. doi: 10.3389/fpls.2020.587641.

    [11]

    HAKATA M, KURODA M, MIYASHITA T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117. doi: 10.1111/j.1467-7652.2012.00741.x

    [12]

    DAMARIS R N, LIN Z Y, YANG P F, et al. The rice alpha-amylase, conserved regulator of seed maturation and germination[J]. International Journal of Molecular Sciences, 2019, 20(2): 450. doi: 10.3390/ijms20020450.

    [13]

    PENG L L, SUN S, YANG B, et al. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice[J]. Plant Biotechnology Journal, 2022, 20(3): 485-498. doi: 10.1111/pbi.13731

    [14] 宋松泉, 刘军, 唐翠芳, 等. 种子耐脱水性的生理及分子机制研究进展[J]. 中国农业科学, 2022, 55(6): 1047-1063.
    [15]

    SMOLIKOVA G, LEONOVA T, VASHURINA N, et al. Desiccation tolerance as the basis of long-term seed viability[J]. International Journal of Molecular Sciences, 2021, 22(1): 101. doi: 10.3390/ijms22010101.

    [16]

    ALI F, QANMBER G, LI F G, et al. Updated role of ABA in seed maturation, dormancy, and germination[J]. Journal of Advanced Research, 2022, 35: 199-214. doi: 10.1016/j.jare.2021.03.011

    [17] 宋松泉, 唐翠芳, 雷华平, 等. ABA调控种子发育的研究进展[J/OL]. 广西植物, 2023 [2023-07-29]. https://kns.cnki.net/kcms2/detail/45.1134.Q.20230620.1121.004.html.
    [18]

    MATILLA A J. Auxin: hormonal signal required for seed development and dormancy[J]. Plants, 2020, 9(6): 705. doi: 10.3390/plants9060705.

    [19]

    LIU X D, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2013, 110(38): 15485-15490. doi: 10.1073/pnas.1304651110

    [20] 田淑兰, 王熹. IAA与亚种间杂交稻籽粒发育的关系及烯效唑的调节[J]. 中国水稻科学, 1998, 12(2): 99-104.
图(8)  /  表(1)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  56
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-08-31
  • 刊出日期:  2023-09-09

目录

    /

    返回文章
    返回