EDTA改性氮化碳吸附鱼塘中氨氮的性能及应用

    宁瑞翔, 廖鑫, 汤日元

    宁瑞翔, 廖鑫, 汤日元. EDTA改性氮化碳吸附鱼塘中氨氮的性能及应用[J]. 华南农业大学学报, 2025, 46(2): 230-237. DOI: 10.7671/j.issn.1001-411X.202403001
    引用本文: 宁瑞翔, 廖鑫, 汤日元. EDTA改性氮化碳吸附鱼塘中氨氮的性能及应用[J]. 华南农业大学学报, 2025, 46(2): 230-237. DOI: 10.7671/j.issn.1001-411X.202403001
    NING Ruixiang, LIAO Xin, TANG Riyuan. Performance and application of EDTA modified carbon nitride in adsorbing ammonia nitrogen in fish ponds[J]. Journal of South China Agricultural University, 2025, 46(2): 230-237. DOI: 10.7671/j.issn.1001-411X.202403001
    Citation: NING Ruixiang, LIAO Xin, TANG Riyuan. Performance and application of EDTA modified carbon nitride in adsorbing ammonia nitrogen in fish ponds[J]. Journal of South China Agricultural University, 2025, 46(2): 230-237. DOI: 10.7671/j.issn.1001-411X.202403001

    EDTA改性氮化碳吸附鱼塘中氨氮的性能及应用

    基金项目: 广东省自然科学基金(2019B151502052);河源市科技计划(河科 2021039)
    详细信息
      作者简介:

      宁瑞翔,硕士研究生,主要从事氨氮去除新材料研究,E-mail: ningruixiang123@163.com

      通讯作者:

      汤日元,教授,博士,主要从事应用化学研究,E-mail: rytang@scau.edu.cn

    • 中图分类号: TQ424.29

    Performance and application of EDTA modified carbon nitride in adsorbing ammonia nitrogen in fish ponds

    • 摘要:
      目的 

      制备对鱼塘氨氮有优良吸附性能的氮化碳。

      方法 

      通过热缩聚法将三聚氰胺和碳酸氢钠共热制备得到具有基础吸附能力的氮化碳(s−C3N4),并采用乙二胺四乙酸二钠(EDTA−2Na)改性得到改性氮化碳(EDTA−s−C3N4)。采用扫描电子显微镜(Scanning electron microscope, SEM)、X射线衍射(X-ray diffraction, XRD)、BET 比表面积、Zeta电位等对材料进行表征。

      结果 

      EDTA−s−C3N4的比表面积高达17.7012 m2/g,表面电势为−19 mV,对鱼塘中氨氮有优良的吸附性能,pH=7.5时氨氮去除率达72%。吸附过程符合准二级动力学,Langmuir等温模型拟合估算的最大吸附容量为24.2131 mg/g。EDTA−s−C3N4经过5次循环再生后对氨氮的去除率仍达60%。毒性评价表明EDTA−s−C3N4对斑马鱼安全无毒。

      结论 

      EDTA−s−C3N4对鱼塘中氨氮有优良的清除效果,安全无毒,实用性好。

      Abstract:
      Objective 

      To prepare modified carbon nitride with enhanced performance in adsorbing ammonia nitrogen in fish ponds.

      Method 

      Carbon nitride (s-C3N4) with basic adsorption capacity was prepared by co-heating of melamine and sodium bicarbonate using the thermal condensation method, and then s-C3N4 was further modified by disodium ethylene diamine tetraacetic acid (EDTA-2Na) to obtain modified carbon nitride (EDTA-s-C3N4). Scanning electron microscope (SEM), X-ray diffraction (XRD), BET surface area, and Zeta potential were used to characterize the materials.

      Result 

      The specific surface area of EDTA-s-C3N4 was as high as 17.7012 m2/g, and the surface potential was −19 mV. It had excellent adsorption performance for ammonia nitrogen in fish ponds with the removal rate of 72% at pH=7.5. The adsorption process conformed to quasi-second-order kinetics, and the maximum adsorption capacity estimated by Langmuir isothermal model fitting was 24.2131 mg/g. After five cycles of regeneration, EDTA-s-C3N4 still had a removal rate of 60% for ammonia nitrogen. The toxicity evaluation proved that EDTA-s-C3N4 was safe and non-toxic to zebrafish.

      Conclusion 

      EDTA-s-C3N4 has good removal effect on ammonia nitrogen in fish ponds. It is safe and non-toxic, and has good practicality.

    • 图  1   g−C3N4、s−C3N4和EDTA−s−C3N4的SEM结果

      Figure  1.   SEM results of g-C3N4, s-C3N4 and EDTA-s-C3N4

      a: g-C3N4; b: s-C3N4; c: EDTA-s-C3N4.

      图  2   EDTA−s−C3N4、s−C3N4和g−C3N4的XRD分析结果

      1~3为3处特征峰。

      Figure  2.   XRD analysis results of EDTA-s-C3N4, s-C3N4 and g-C3N4

      1−3 are three characteristic peaks.

      图  3   g−C3N4、s−C3N4和EDTA−s−C3N4的Zeta电位

      Figure  3.   Zeta potentials of g-C3N4, s-C3N4 and EDTA-s-C3N4

      图  4   不同因素对氨氮去除率的影响

      Figure  4.   Effects of different factors on ammonia nitrogen removal rate

      图  5   杂离子对氨氮去除率的影响

      Figure  5.   Effect of heteroions on ammonia nitrogen removal rate

      图  6   准一级动力学模型(a)和准二级动力学模型(b)

      Figure  6.   Quasi-first-order kinetic model (a) and quasi-second-order kinetic model (b)

      图  7   Langmuir (a)和Freundlich (b)模型吸附等温线

      Figure  7.   Adsorption isotherm lines of Langmuir (a) and Freundlich (b) models

      图  8   EDTA−s−C3N4循环使用结果

      Figure  8.   Recycling results of EDTA-s-C3N4

      表  1   g−C3N4、s−C3N4和EDTA−s−C3N4的比表面积

      Table  1   Specific surface areas of g-C3N4, s-C3N4 and EDTA-s-C3N4

      样品
      Sample
      比表面积/(m2·g−1)
      Specific surface area
      孔容/(cm3·g−1)
      Pore volume
      孔径/nm
      Pore size
      g-C3N41.29370.00102.9996
      s-C3N412.56740.03089.8030
      EDTA-s-C3N417.70120.03898.7958
      下载: 导出CSV

      表  2   毒性试验检测斑马鱼存活数量1)

      Table  2   Detection of number of survived zebrafish in toxicity experiment

      处理
      Treatment
      24 h 48 h 72 h 96 h
      空白对照
      Blank control
      10±0 10±0 10±0 10±0
      重铬酸钾
      Potassium dichromate
      6±0.816 1±0.816 0±0 0±0
      EDTA-s-C3N4 10±0 10±0 10±0 10±0
       1)表中数据为3次重复的平均值±标准差。
       1) Data in the table is the mean ± standard deviation of three replicates.
      下载: 导出CSV

      表  3   动力学拟合参数

      Table  3   Kinetic fitting parameters

      模型 Model qe/(mg·g−1) K R2
      准一级动力学
      Quasi-first-order kinetic
      90.6857 0.8643 0.7857
      准二级动力学
      Quasi-second-order kinetic
      18.4842 0.0074 0.9925
      下载: 导出CSV
    • [1] 张卫强, 朱英. 养殖水体中氨氮的危害及其检测方法研究进展[J] 环境卫生学杂志, 2012, 2(6): 324-327.
      [2]

      LI W W, SHI X L, ZHANG S J, et al. Modelling of ammonia recovery from wastewater by air stripping in rotating packed beds[J]. Science of the Total Environment, 2020, 702: 134971. doi: 10.1016/j.scitotenv.2019.134971

      [3]

      AN S R, JIN Q. Significant removal of ammonia nitrogen in low concentration from aqueous solution at low pH by advanced air stripping[J]. Environmental Science and Pollution Research International, 2021, 28(26): 35113-35125. doi: 10.1007/s11356-021-13164-6

      [4]

      LAVANYA A, RAMESH S K T. Crystal seed-enhanced ammonia nitrogen and phosphate recovery from landfill leachate using struvite precipitation technique[J]. Environmental Science and Pollution Research International, 2021, 28(43): 60569-60584. doi: 10.1007/s11356-021-14950-y

      [5]

      ZHOU S Y, DONG M G, DING X Y, et al. Application of RSM to optimize the recovery of ammonia nitrogen from high chromium effluent produced in vanadium industry using struvite precipitation[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106318. doi: 10.1016/j.jece.2021.106318

      [6]

      HUANG H M, SONG Q W, WANG W J, et al. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process[J]. Journal of Environmental Management, 2012, 101: 68-74. doi: 10.1016/j.jenvman.2011.12.035

      [7] 刘诗园, 张婷, 高雅娟, 等. 耐高浓度氨氮微生物 Y5 的脱氮特性及应用研究[J]. 工业水处理, 2024, 44(7): 162-170.
      [8] 章裕, 黄林祥, 汪晓军, 等. 中试沸石曝气生物滤池用于低氨氮废水亚硝化[J]. 环境科学学报, 2024, 44(1): 175-183.
      [9] 鲁秀国, 盘贤豪, 郑宇佳. 改性及天然沸石对水中氨氮吸附性能的研究[J]. 离子交换与吸附, 2020, 36(6): 520-529.
      [10] 陈佼, 张建强, 陆一新, 等. 玉米芯生物炭对含盐污水中氨氮的吸附特性[J]. 安全与环境学报, 2017, 17(3): 1088-1093.
      [11] 王芳君, 桑倩倩, 邓颖, 等. 磁性铁基改性生物炭去除水中氨氮[J]. 环境科学, 2021, 42(4): 1913-1922.
      [12] 陈徐庆, 唐玉朝, 伍昌年, 等. NaOH改性活性白土对低浓度氨氮的吸附研究[J]. 化学工程, 2022, 50(9): 30-36.
      [13] 闫婷婷, 江芳, 陈欢. 介孔氮化碳对水中全氟辛烷磺酸的吸附去除研究[J]. 环境科学学报, 2014, 34(6): 1464-1472.
      [14]

      SHEN C C, CHEN C L, WEN T, et al. Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions[J]. Journal of Colloid and Interface Science, 2015, 456: 7-14. doi: 10.1016/j.jcis.2015.06.004

      [15]

      WANG J C, LI H X, YUE D B. Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride[J]. Journal of Hazardous Materials, 2022, 424: 127643. doi: 10.1016/j.jhazmat.2021.127643

      [16] 中华人民共和国生态环境部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社, 2010.
      [17]

      WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317

      [18]

      YANG S B, GONG Y J, ZHANG J S, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456. doi: 10.1002/adma.201204453

      [19]

      SHU Z, WANG Y, WANG W B, et al. A green one-pot approach for mesoporous g-C3N4 nanosheets with in situ sodium doping for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44(2): 748-756. doi: 10.1016/j.ijhydene.2018.11.025

      [20] 刘磐. 改性天然沸石对煤化工废水中高浓度 NH4+的吸附和再生方法研究[J]. 工业水处理, 2024, 44(7): 141-149.
      [21]

      JORGENSEN T C, WEATHERLEY L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J]. Water Research, 2003, 37(8): 1723-1728. doi: 10.1016/S0043-1354(02)00571-7

      [22] 张涛, 赵永红, 成先雄. EDTA改性沸石吸附去除低浓度氨氮的实验研究[J]. 应用化工, 2021, 50(4): 911-914.
      [23] 生态环境部, 国家环境保护局. 渔业水质标准: GB 11607—1989[S]. 北京: 中国标准出版社, 1990.
      [24] 杨长志, 韩广源, 姜冰, 等. UPLC-MS-MS法测定八宝粥罐头中乙二胺四乙酸二钠残留量[J]. 食品科学, 2015, 36(4): 208-212.
      [25]

      MOUSAVI H, DARIAN J T, MOKHTARANI B. Enhanced nitrogen adsorption capacity on Ca2+ ion-exchanged hierarchical X zeolite[J]. Separation and Purification Technology, 2021, 264: 118442. doi: 10.1016/j.seppur.2021.118442

    图(8)  /  表(3)
    计量
    • 文章访问数:  134
    • HTML全文浏览量:  35
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-01
    • 网络出版日期:  2024-09-12
    • 发布日期:  2024-09-17
    • 刊出日期:  2025-03-09

    目录

      /

      返回文章
      返回