Prediction of potential suitable region for Emex australis in China based on the optimized MaxEnt model
-
摘要:目的
分析预测南方三棘果Emex australis在我国的潜在适生区以及影响其分布的主要环境变量,为防止南方三棘果入侵我国和保护我国农业生产、生态安全提供理论参考。
方法运用刀切法(Jackknife)计算各个环境变量对物种分布的影响。使用ENMeval软件包对MaxEnt生态位模型进行优化处理,将南方三棘果的分布数据和不同气候情景下的气候数据输入优化后的MaxEnt模型,对我国潜在分布区进行预测。
结果最冷季度平均气温(Bio11)对南方三棘果分布影响最大,贡献率为27.7%。环境因子响应曲线表明,最冷季度平均气温为9.35~12.76 ℃时,南方三棘果的存在概率大于0.5;MaxEnt结果表明,南方三棘果在我国的适生区主要集中于云南、广东、广西和福建。
结论对我国南方三棘果适生区应当建立常态化监测方案,在适生区最冷季度平均气温适宜其生存的年份要加大监测力度,防止其在我国定殖、扩散。
Abstract:ObjectiveThe aim of this paper was to analyze and predict the potential suitable regions of Emex australis in China and the major environmental variables affecting its distribution, and provide a theoretical reference for the prevention of the invasion ofE. australis into China and protection of the agricultural production and ecological security.
MethodThe Jackknife was used to calculate the influence of each environmental variable on the species distribution. ENMeval was used to optimize the maximum entropy model (MaxEnt). Then the optimized model was used to predict the potential suitable region ofE. australis in China by inputting the distribution data of E. australis and the climate data under different climate scenarios.
ResultThe main factor affected the distribution of E. australis was the mean temperature of the coldest month (Bio11), with a contribution rate of 27.7%. The environmental factor response curves showed that the emergence probability of E. australis was greater than 0.5, when the mean temperature of the coldest quarter ranged from 9.35 to 12.76 ℃. Results of the MaxEnt model showed that the suitable regions of E. australis in China were mainly in Yunnan, Guangdong, Guangxi and Fujian.
ConclusionA normalized monitoring scheme should be established for the suitable area of E. australis. In the years when the mean temperature of the coldest quarter in the suitable region is good for its survival, monitoring efforts should be strengthened to prevent its colonization and distribution in China.
-
Keywords:
- Emex australis /
- MaxEnt model /
- Potential suitable area /
- Weed invasion
-
-
图 2 环境变量重要性的刀切法检验结果
Asp: 坡向;Slo: 坡度;Elev: 高程海拔;Bio9: 最干季度平均温度;Bio4: 温度季节变化标准差;Bio3: 等温性 ( Bio2/ Bio7) ×100;Bio2: 昼夜温差月均值;Bio19: 最冷季度降水量;Bio15: 降水量变异系数;Bio14: 最干月降水量;Bio11: 最冷季度平均温度;Bio1: 年平均温度
Figure 2. Results of Jackknife for the importance of the environmental variables
Asp: Aspect; Slo: Slope; Elev: Elevation; Bio9: Mean temperature of the driest quarter; Bio4: Standard deviation of seasonal variation of temperature; Bio3: Isothermality; Bio2: Mean diurnal range; Bio19: Precipitation of the coldest quarter; Bio15: Precipitation seasonality; Bio14: Precipitation of the driest month; Bio11: Mean temperature of the coldest quarter; Bio1: Annual mean temperature
表 1 环境变量因子
Table 1 Environmental variable factors
变量 Variable 描述 Description 变量 Variable 描述 Description Bio1 年平均温度/℃ Annual mean temperature Bio12 年均降水量/mm Annual mean precipitation Bio2 昼夜温差月均值/℃ Monthly mean diurnal temperature range Bio13 最湿月降水量/mm Precipitation of the wettest month Bio3 等温性/% (Bio2/Bio7) ×100 Isothermality Bio14 最干月降水量/mm Precipitation of the driest month Bio4 温度季节变化标准差/℃ Standard deviation of seasonal variation of temperature Bio15 降水量变异系数 Standard deviation of the precipitation Bio5 最暖月最高温/℃ Maximum temperature of the warmest month Bio16 最湿季度降水量/mm Precipitation of the wettest quarter Bio6 最冷月最低温/℃ Minimum temperature of the coldest month Bio17 最干季度降水量/mm Precipitation of the driest quarter Bio7 年均温度变化范围/℃ Temperature annual range Bio18 最暖季度降水量/mm Precipitation of the warmest quarter Bio8 最湿季度平均温度/℃ Mean temperature of the wettest quarter Bio19 最冷季度降水量/mm Precipitation of the coldest quarter Bio9 最干季度平均温度/℃ Mean temperature of the driest quarter Elev 高程海拔 Elevation Bio10 最暖季度平均温度/℃ Mean temperature of the warmest quarter Slo 坡度/° Slope Bio11 最冷季度平均温度/℃ Mean temperature of the coldest quarter Asp 坡向 Aspect 表 4 不同时期气候情景下南方三棘果在中国潜在适生区的面积
Table 4 Areas of the potential suitable region for Emex australis in China under different climate scenarios in different periods
×104 km2 年份 Year 气候情景 Climate scenario 低适生区 Low suitable region 中适生区 Middle suitable region 高适生区 High suitable region 总适生区 Total suitable region 2022 44.02 13.36 11.63 69.02 2040 SSP1-2.6 38.09 19.93 5.51 63.54 2040 SSP2-4.5 41.71 15.67 7.71 65.10 2040 SSP3-7.0 34.27 19.88 9.18 63.34 2040 SSP5-8.5 38.59 16.76 7.54 62.90 -
[1] 陈凤新, 蒙彦良, 杜杰, 等. 中国外来生物入侵与社会经济因素多元回归分析[J]. 植物检疫, 2021, 35(4): 8-14. doi: 10.19662/j.cnki.issn1005-2755.2021.04.002 [2] 李瑞法, 柳之光, 楚伟, 等. 我国进境植物疫情截获量的时序特征及预测[J]. 植物检疫, 2016, 30(4): 1-5. doi: 10.19662/j.cnki.issn1005-2755.2016.04.001 [3] 王昕, 戴良英. 黄埔口岸进境粮食截获疫情分析[J]. 植物检疫, 2016, 30(6): 80-82. doi: 10.19662/j.cnki.issn1005-2755.2016.06.023 [4] 伏建国, 高振兴, 李敏. 江苏口岸首次从进境加拿大油菜籽中截获检疫性杂草南方三棘果[J]. 植物检疫, 2010, 24(4): 68. [5] MENDONCA L P, OLIVERIA E E, ANDERAZZA F, et al. Host potential and adaptive responses of Drosophila suzukii (Diptera: Drosophilidae) to barbados cherries[J]. Journal of Economic Entomology, 2019, 112(6): 3002-3006.
[6] 王瑞, 万方浩. 入侵植物银毛龙葵在中国的适生区预测与早期监测预警[J]. 生态学杂志, 2016, 35(7): 1697-1703. [7] 叶建峰, 唐丽霞, 吴先健, 等. 东莞口岸从进境燕麦粒中截获检疫性杂草南方三棘果[J]. 植物检疫, 2010, 24(2): 42. doi: 10.19662/j.cnki.issn1005-2755.2010.02.015 [8] HERNANDEZ P A, GRAHAM C H, MASTER L L, et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2010, 29(5): 773-785.
[9] KHANGHAH S S, MOAMERI M, GHORBANI A, et al. Modeling potential habitats and predicting habitat connectivity for Leucanthemum vulgare Lam. in northwestern rangelands of Iran[J]. Environmental Monitoring and Assessment, 2022, 194(2): 1-16.
[10] 王运生. 生态位模型在外来入侵物种风险评估中的应用研究[D]. 长沙: 湖南农业大学, 2007. [11] LUO C, XU W H, ZHOU Z X, et al. Habitat prediction for forest musk deer (Moschus berezovskii) in Qinling mountain range based on niche model[J]. Acta Ecologica Sinica, 2011, 31(5): 1221-1229.
[12] 房锋, 张朝贤, 黄红娟, 等. 基于MaxEnt的麦田恶性杂草节节麦的潜在分布区预测[J]. 草业学报, 2013, 22(2): 62-70. doi: 10.11686/cyxb20130208 [13] 柳晓燕, 李俊生, 赵彩云, 等. 基于MAXENT模型和ArcGIS预测豚草在中国的潜在适生区[J]. 植物保护学报, 2016, 43(6): 1041-1048. [14] 唐兴港, 袁颖丹, 张金池. 气候变化对杉木适生区和生态位的影响[J]. 植物研究, 2022, 42(1): 151-160. doi: 10.7525/j.issn.1673-5102.2022.01.016 [15] 李安, 李良涛, 高萌萌, 等. 基于MaxEnt模型和气候变化情景入侵种黄顶菊在中国的分布区预测[J]. 农学学报, 2020, 10(1): 60-67. doi: 10.11923/j.issn.2095-4050.cjas20190700109 [16] 姜大膀, 富元海. 2 ℃全球变暖背景下中国未来气候变化预估[J]. 大气科学, 2012, 36(2): 234-246. doi: 10.3878/j.issn.1006-9895.2011.11074 [17] JAMAL Z A, ABOU-SHAARA H F, QAMER S, et al. Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm[J]. Journal of King Saud University-Science, 2021, 33(1): 1-17. doi: 10.1016/j.jksues.2019.09.005
[18] KONG F, TANG L, HE H, et al. Assessing the impact of climate change on the distribution of Osmanthus fragrans using MaxEnt[J]. Environmental Science and Pollution Research, 2021, 28(26): 34655-34663. doi: 10.1007/s11356-021-13121-3
[19] 辛晓歌, 吴统文, 张洁, 等. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 2019, 15(5): 533-539. [20] 王翀, 林慧龙, 何兰, 等. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报, 2014, 23(4): 20-30. doi: 10.11686/cyxb20140403 [21] SONG R, MA Y, HU Z, et al. MaxEnt modeling of Dermacentor marginatus (Acari: Ixodidae) distribution in Xinjiang, China[J]. Journal of Medical Entomology, 2020, 57(5): 1659-1667. doi: 10.1093/jme/tjaa063
[22] ZHANG M G, SLIK J, MA K P. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Scientific Reports, 2016, 6(1): 22400. doi: 10.1038/srep22400.
[23] GRAHAM M H. Confronting multicollinearity in ecological multiple regression[J]. Ecology, 2003, 84(11): 2809-2815. doi: 10.1890/02-3114
[24] 张路. 基于MAXENT模型预测齿裂大戟在中国的潜在分布区[J]. 生物安全学报, 2015, 24(3): 194-200. doi: 10.3969/j.issn.2095-1787.2015.03.003 [25] 任子春. 基于MaxEnt模型在全球变暖条件下菟丝子属全寄生植物及其寄主的潜在分布预测[D]. 临汾: 山西师范大学, 2020. [26] 郭水良, 高平磊, 娄玉霞. 应用MaxEnt模型预测检疫性杂草毒莴苣在我国的潜分布范围[J]. 上海交通大学学报(农业科学版), 2011, 29(5): 15-19. [27] WILLIAMS P, YA T, JIAN Y, et al. The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini)[J]. Systematics and Biodiversity, 2009, 7(2): 101-187. doi: 10.1017/S1477200008002843
[28] 叶兴状, 张明珠, 赖文峰, 等. 基于MaxEnt优化模型的闽楠潜在适宜分布预测[J]. 生态学报, 2021, 41(20): 8135-8144. [29] ELITH J, GRAHAM C H, ANDERSON R P, et al. Novel methods improve prediction of species distributions from occurrence data[J]. Ecography, 2010, 29(2): 129-151.
[30] 张海娟, 陈勇, 黄烈健, 等. 基于生态位模型的薇甘菊在中国适生区的预测[J]. 农业工程学报, 2011, 27(S1): 413-418. [31] 朱耿平, 范靖宇, 王梦琳, 等. ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例[J]. 生物安全学报, 2017, 26(3): 184-190. doi: 10.3969/j.issn.2095-1787.2017.03.002 [32] PEARCE J L, BOYCE M S. Modelling distribution and abundance with presence-only data[J]. Journal of Applied Ecology, 2006, 43(3): 405-412. doi: 10.1111/j.1365-2664.2005.01112.x
[33] KOZAK K H, GRAHAM C H, WIENS J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology & Evolution, 2008, 23(3): 141-148.
[34] 陈星, 赵韦, 包海龙. 西藏山南地区采集纪行——错那县[J]. 生命世界, 2018(3): 94-95. [35] 张玉环, 郝建华, 吴海荣, 等. 外来入侵植物胜红蓟的胚胎学观察及繁殖系统研究[J]. 植物科学学报, 2020, 38(2): 162-172. doi: 10.11913/PSJ.2095-0837.2020.20162 [36] 王桔红, 史生晶, 陈文, 等. 鬼针草与含羞草化感作用及其入侵性的研究[J]. 草业学报, 2020, 29(4): 81-91. doi: 10.11686/cyxb2019480 [37] POHLNER D. Emex australis and dried vine fruit production in Sunraysia[J]. Plant Protection Quarterly, 1996, 11(4): 150-153.
[38] JAVAID M M, TANVEER A, ALI H H, et al. Wheat yield loss in a two species competition with Emex australis and Emex spinosa[J]. Planta Daninha, 2016, 34: 35-46. doi: 10.1590/S0100-83582016340100004
[39] ABBAS R N, TANVEER A, ALI A, et al. Effects of Emex australis Steinh on germination and early seedling growth of wheat (Triticum aestivum L. )[J]. Allelopathy Journal, 2010, 25(2): 513-520.
[40] SCOTT J K, BOWRAN D G. Workshop to identify research priorities for Emex species[J]. Plant Protection Quarterly, 1996, 11(4): 175-176.
[41] PUCHAŁKA R, DYDERSKI M K, VÍTKOVÁ M, et al. Black locust (Robinia pseudoacacia L. ) range contraction and expansion in Europe under changing climate[J]. Global Change Biology, 2021, 27(8): 1587-1600. doi: 10.1111/gcb.15486
[42] 梁忆冰. 植物检疫对外来有害生物入侵的防御作用[J]. 植物保护, 2002(2): 45-47. doi: 10.3969/j.issn.0529-1542.2002.02.018 [43] 朱煜建, 周伟光, 张昊, 等. 刺蒺藜草在我国的适生区预测[J]. 植物检疫, 2022, 36(1): 71-76. doi: 10.19662/j.cnki.issn1005-2755.2021.00.028 [44] 郭燕青, 史梦竹, 李建宇, 等. 基于MaxEnt模型的假臭草潜在分布区预测[J]. 热带亚热带植物学报, 2019, 27(3): 250-260. doi: 10.11926/jtsb.3977