瓜类蔬菜体内多环芳烃的分布特征及健康风险评估

    张会敏, 龙明华, 乔双雨, 赵体跃, 龙彪, 梁勇生

    张会敏, 龙明华, 乔双雨, 等. 瓜类蔬菜体内多环芳烃的分布特征及健康风险评估[J]. 华南农业大学学报, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035
    引用本文: 张会敏, 龙明华, 乔双雨, 等. 瓜类蔬菜体内多环芳烃的分布特征及健康风险评估[J]. 华南农业大学学报, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035
    ZHANG Huimin, LONG Minghua, QIAO Shuangyu, et al. Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in cucurbitacae vegetables[J]. Journal of South China Agricultural University, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035
    Citation: ZHANG Huimin, LONG Minghua, QIAO Shuangyu, et al. Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in cucurbitacae vegetables[J]. Journal of South China Agricultural University, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035

    瓜类蔬菜体内多环芳烃的分布特征及健康风险评估

    基金项目: 国家自然科学基金(31360479);广西自然科学基金(2014GXNSFAA118100);国家现代农业产业技术体系广西瓜果蔬菜创新团队建设项目(nycytxgxcxtd-10-03)
    详细信息
      作者简介:

      张会敏(1994—),女,硕士研究生,E-mail: 936208326@qq.com

      通讯作者:

      龙明华(1961—),男,教授,博士,E-mail: longmhua@163.com

    • 中图分类号: S642

    Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in cucurbitacae vegetables

    • 摘要:
      目的 

      探讨多环芳烃(PAHs)在瓜类蔬菜体内的分布特征和积累规律,并对南宁市不同年龄不同性别人群摄食每种瓜类蔬菜果实的健康风险进行评估。

      方法 

      采集黄瓜Cucumis sativus、苦瓜Momordica charantia、丝瓜Luffa cylindrical和节瓜Benincasa hispida var. chieh-qua根系各30株和果实各20个,并分别称取茎1 kg、叶片1 kg和叶柄1 kg,用超声波提取、固相萃取对蔬菜进行前处理,用高效液相色谱法检测各部位中16种PAHs含量。

      结果 

      16种PAHs在4种瓜类蔬菜中均有检出,PAHs的总质量分数为88.44~1 229.85 μg·kg–1,其中各环数PAHs含量顺序为5环>6环>2环>4环>3环。南宁市不同人群食用瓜类果实引起的致癌风险值在1.48×10–6~7.84×10–5范围内,仅摄入可食用部分引起的致癌风险值在2.23×10–7~3.35×10–6范围内。

      结论 

      比较同种瓜类不同部位,4种瓜皆是叶片PAHs含量最高,黄瓜果瓤含量最低,苦瓜和丝瓜果肉含量最低,节瓜叶柄含量最低;比较4种瓜类叶片,节瓜叶片PAHs含量最高,苦瓜叶片含量最低。在目前蔬菜消费量下,南宁市民摄食瓜类蔬菜果实存在潜在致癌风险。

      Abstract:
      Objective 

      To explore the distribution characteristics and accumulation rules of polycyclic aromatic hydrocarbons (PAHs) in cucurbitacae vegetables, and evaluate the health risks of each cucurbitacae vegetable to people in different age groups and genders in Nanning.

      Method 

      The samples of Cucumis sativus, Momordica charantia, Luffa cylindrical and Benincasa hispida var. chieh-qua were collected. For each type of vegetable, we collected roots of 30 plants, 1 kg stems, 1 kg leaves, 1 kg petioles and 20 fruits. The vegetables were pretreated by ultrasonic extraction and solid phase extraction. The contents of 16 different PAHs in different parts of vegetables were detected by high performance liquid chromatography (HPLC).

      Result 

      Sixteen types of PAHs were all detected in four kinds of cucurbitacae vegetables, the contents of total PAHs ranged from 88.44 to 1 229.85 μg.kg–1. The order of detected PAHs amounts in cucurbitacae vegetables was 5-ring PAHs > 6-ring PAHs > 2-ring PAHs > 4-ring PAHs > 3-ring PAHs. The cancer risk levels of diverse population groups in Nanning by ingesting fruit from cucurbitacae vegetables were in the range of 1.48×10 –6 and 7.87×10–5. The cancer risk levels caused by ingesting only edible portions were in the range of 2.23×10–7 and 3.35×10–6.

      Conclusion 

      Comparing different organs of the same cucurbitacae vegetables, leaves had the highest PAH contents for all four vegetables, C. sativus pulp had the lowest PAHs content, M. charantia and L. cylindrical flesh had the lowest PAHs contents, B. hispida var. chieh-qua petious had the lowest PAHs content. Comparing leaves of different cucurbitacae vegetables, PAHs content was the highest in B. hispida var. chieh-qua while the lowest in M. charantia. Under the current consumption amount of vegetables, potential carcinogenic risks exist for Nanning residents by ingesting fruits of cucurbitacae vegetables.

    • 图  1   PAHs在4种瓜类蔬菜7个部位的含量

      同种蔬菜柱子上的不同小写字母表示差异显著(P<0.05,Duncan’s法)

      Figure  1.   PAHs contents in seven parts of four cucurbitacae vegetables

      Different lowercase letters on bars of the same vegetable indicate significant difference(P<0.05, Duncan’s test)

      表  1   不同人群对瓜类蔬菜的摄取量

      Table  1   Ingestion amounts of cucurbitacae vegetables for different groups of people g·d–1

      蔬菜种类
      Vegetable type
      蔬菜部位
      Vegebable part
      儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
      男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
      苦瓜
      Balsam pear
      果实 Fruit 2.19 2.07 3.68 3.22 5.52 5.06 5.29 4.60
      可食用部位 Edible portion 1.79 1.70 3.02 2.64 4.53 4.15 4.34 3.77
      节瓜
      Chieh qua
      果实 Fruit 1.43 1.35 2.40 2.10 3.60 3.30 3.45 3.00
      可食用部位 Edible portion 0.97 0.92 1.63 1.43 2.45 2.24 2.35 2.04
      丝瓜
      Luffa
      果实 Fruit 0.95 0.90 1.60 1.40 2.40 2.20 2.30 2.00
      可食用部位 Edible portion 0.74 1.25 1.25 1.79 1.87 1.72 1.79 1.56
      下载: 导出CSV

      表  2   不同人群对黄瓜的摄取量

      Table  2   Ingestion amounts of Cucumis sativus for different groups of people g·d–1

      黄瓜部位
      Cucumber part
      儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
      男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
      果实 Fruit 3.99 3.78 6.72 5.88 10.08 9.24 9.66 8.40
      果肉和果瓤 Flesh and pulp 3.47 3.29 5.12 2.64 8.77 8.04 8.44 7.31
      果肉 Flesh 2.63 2.49 4.44 3.88 6.65 6.10 6.38 5.54
      下载: 导出CSV

      表  3   黄瓜各部位中多环芳烃含量1)

      Table  3   PAHs contents in various parts of Cucumis sativus

      苯环数
      Benzene rings
      PAHs w/(μg·kg–1)

      Root

      Stem

      Leaf
      叶柄
      Petious
      果皮
      Peel
      果肉
      Flesh
      果瓤
      Pulp
      2 Nap 42.61±2.02b 30.63±2.04c 128.74±4.68a 21.19±2.32d 18.14±10.47e
      Acy 39.13±0.38b 28.24±5.06c 109.42±11.01a 18.86±0.21d 17.83±1.01d 1.89±0.30e
      Ace 96.83b±7.23b 72.42±10.28c 218.33±27.48a 47.31±1.76d 40.54±3.15d 14.18±0.24e 12.07±1.76e
      Flu 32.23±13.48b 18.02±17.11c 63.65±1.05a 12.94±2.67c 10.56±0.94c 7.56±0.07c 12.30±0.50c
      合计 Total 210.80±24.08b 149.31±22.69bc 520.14±31.55a 100.30±4.07cd 87.07±5.10cd 23.64±3.01d 24.37±2.12d
      3 Phe 20.26±1.56a 13.94±0.45b 13.32±1.77b 8.74±1.17c 7.55±1.86c 19.37±3.87 6.05±2.76
      Ant
      Fla 32.05±0.76a 23.08±0.98ab 43.39±8.58a 13.93±1.33b 8.66±7.51b 13.55±3.65b 8.01±1.70b
      合计 Total 52.31±2.15a 37.02±1.16b 56.71±10.36a 22.67±2.39cd 16.21±9.35d 32.92±7.51bc 14.06±4.39d
      4 Pyr 47.36±4.66a 31.36±4.56ab 27.35±15.9ab 13.92±10.24b 3.60±1.67b 40.17±12.24a 27.56±11.89ab
      BaA 22.63±4.61ab 23.14±18.56a 12.55±23.8abc 3.54±6.13abc 6.34±3.07abc 2.88±3.65bc
      Chr 2.02±3.49b 8.79±1.50a 3.66±0.27ab 3.61±1.14ab
      合计 Total 72.01±5.41a 54.50±21.17ab 53.48±12.94ab 17.46±12.24cd 3.60±1.67d 50.17±14.84ab 34.05±14.11bc
      5 BbF 8.07±0.19b 15.23±0.25a 4.77±2.09bc 1.51±2.02bc 3.80±0.02bc 2.90±0.14bc
      BkF 15.36±5.07b 21.32±10.38b 4.94±1.12b 23.96±17.56b 65.43±31.82a 7.17±2.35b 7.04±5.01b
      BaP 166.63±42.37a 0.05±0.04b
      DBA 182.67±8.12a 164.41±20.54a 17.90±7.06b 34.66±17.68b 22.84±9.08b 0.40±3.72b 1.13±9.27b
      合计 Total 206.10±24.19a 185.73±50.93a 204.70±35.59a 63.39±35.80b 89.78±22.67bc 11.37±2.49c 11.12±4.89c
      6 BPE 24.77±5.16a 2.21±1.99b 4.53±7.84b 11.70±3.67b 10.94±11.92b 4.80±0.04b 3.39±0.17b
      IPY 17.15±1.80e 321.83±15.03b 231.52±29.20c 134.50±14.40d 517.76±71.25a 11.51±0.40e 1.45±1.09e
      合计 Total 41.92±6.81e 324.04±19.11b 236.04±33.37c 146.23±18.06d 528.69±83.16a 16.31±0.36e 4.84±1.12e
       1) 同行数据后的不同小写字母表示差异显著 (P<0.05, Duncan’s 法)
       1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
      下载: 导出CSV

      表  4   苦瓜各部位中多环芳烃含量1)

      Table  4   PAHs contents in various parts of Momordica charantia

      苯环数
      Benzene rings
      PAHs w/(μg·kg–1)

      Root

      Stem

      Leaf
      叶柄
      Petious
      果皮
      Peel
      果肉
      Flesh
      果瓤
      Pulp
      2 Nap 65.90±1.01b 36.56±19.76cd 92.44±1.14a 31.01±0.81d 13.37±0.44e 13.57±0.20e 45.82±3.25c
      Acy 45.09±4.72b 54.59±2.44a 29.11±1.81c 11.16±0.70d 12.38±1.04d
      Ace 131.82±23.98a 79.58±5.23bc 44.58±5.28c 73.48±0.52b 68.61±1.02b 67.39±1.47bc
      Flu 22.27±19.43a 24.73±11.81a 13.81±1.56ab 11.01±2.19ab 19.61±4.52a 17.31±0.81ab
      合计 Total 2 645.08±10.80a 167.43±14.53b 92.44±1.14e 118.52±16.70cd 109.02±2.27de 114.17±3.41cd 130.52±5.03c
      3 Phe 15.84±1.39a 16.50±0.85a 1.01±0.47e 7.58±0.74c 3.80±0.68d 4.46±0.12d 10.93±0.58b
      Ant
      Fla 26.22±23.13a 36.31±5.59a 15.82±0.47a 16.29±0.94a 21.19±23.77a 39.00±0.31a 20.90±0.24a
      合计 Total 42.06±24.53ab 52.81±14.53a 16.83±0.80b 23.87±16.69b 24.99±24.22b 43.46±0.19ab 31.83±0.81ab
      4 Pyr 16.43±4.87b 18.62±0.99b 12.90±2.18bc 5.98±0.56bc 12.87±0.52bc 23.19±0.88a
      BaA 14.84±9.67b 11.21±9.31b 7.25±7.55b 10.30±0.08b 0.96±1.34b 57.04±19.06a
      Chr 328.73±77.31a 1.64±0.08d 4.44±0.22c 8.29±7.20b
      合计 Total 31.27±9.31cd 29.82±5.64cd 328.73±77.31a 20.15±1.59d 17.92±25.75b 18.26±2.08d 88.51±27.11bc
      5 BbF 3.47±1.87a
      BkF 109.84±12.35a 80.34±7.58a 11.03±9.47b 2.86±0.01b 1.38±0.87b
      BaP 53.98±6.60a
      DBA 78.38±6.67cd 108.43±13.48c 227.15±37.24a 63.4±22.69d 0.26±8.75e 0.75±0.24e 180.23±21.23b
      合计 Total 188.22±11.47a 242.74±8.69a 227.15±37.24a 74.43±9.59b 3.12±0.01b 5.60±2.60b 180.23±21.23a
      6 BPE 0.65±1.10c 21.15±12.03c 199.35±1.93b 3.17±5.49c 28.44±1.11c 0.59±0.47c 241.77±43.53a
      IPY 110.80±13.10a 123.32±42.53a 49.56±35.44b 27.96±2.34bc 2.43±1.46c 12.78±18.08bc
      合计 Total 111.46±13.78c 21.15±12.03d 322.67±43.86a 52.73±31.96d 56.35±2.66d 3.02±1.00d 254.55±40.48b
       1) 同行数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
       1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
      下载: 导出CSV

      表  5   节瓜各部位中多环芳烃的含量1)

      Table  5   PAHs contents in various parts of Benincasa hispida var. chieh-qua

      苯环数
      Benzene rings
      PAHs w/(μg·kg–1)

      Root

      Stem

      Leaf
      叶柄
      Petious
      果皮
      Peel
      果肉
      Flesh
      果瓤
      Pulp
      2 Nap 11.22±9.71ab 9.55±9.28ab 15.65±4.38a 3.94±6.85b 7.71±2.57ab 3.91±1.57b 4.12±0.53b
      Acy 14.25±24.69a 8.07±13.97a 8.79±15.23a
      Ace 38.55±33.39bc 3.77±6.53c 64.87±4.43b 9.25±8.92c 10.90±15.59c 321.16±9.95a 44.40±23.00c
      Flu 16.66±15.38bc 38.39±8.69a 38.31±5.91ab 5.39±4.76c 19.06±25.19abc
      合计 Total 49.77±43.11cd 29.99±15.49cd 118.91±15.77b 62.43±18.07c 18.62±13.11d 338.83±2.71a 76.37±34.81c
      3 Phe 10.61±9.20bc 14.04±7.33bc 31.23±3.28a 8.44±7.31cd 19.11±4.98b
      Ant 22.52±3.90a 2.83±2.60a 3.13±5.42a 5.84±4.76a 8.15±7.26a 3.41±5.90a
      Fla 63.47±6.91a 30.56±15.68ab 34.07±2.87ab 24.02±14.81ab 30.87±5.89ab 48.29±4.54ab 12.33±0.30b
      合计 Total 96.60±39.19a 47.43±6.54b 68.43±11.32ab 38.30±12.13bc 58.13±15.02b 51.69±7.22b 12.33±0.30c
      4 Pyr 51.29±0.49ab 9.85±17.07b 65.20±35.60a 36.19±12.68ab 23.77±10.86b 7.63±1.50b 8.71±0.34b
      BaA 35.23±1.70a 31.26±0.82a 49.24±9.40ab 23.13±1.11ab 30.45±13.23a 3.22±0.47b 4.26±1.45b
      Chr 32.34±1.36a 14.72±7.90a 17.76±1.69ab 12.41±8.48ab 22.77±4.35a 3.61±0.07b 4.45±3.92b
      合计 Total 118.86±0.31a 55.84±13.75b 132.19±46.19a 71.73±20.00b 77.99±16.87b 14.46±1.82c 17.42±3.49c
      5 BbF 30.14±2.55c 27.65±10.83c 147.29±28.36b 37.84±1.79dc 43.28±11.92c 45.58±47.8c 931.05±36.01a
      BkF 28.84±0.05ab 18.72±4.84abc 38.98±7.80a 15.98±10.61abc 34.26±18.77ab 6.60±2.89c 12.58±8.34bc
      BaP 17.18±14.88a 12.35±8.18a 17.33±1.28a 7.37±12.76a 27.04±10.95a 7.13±4.27a 19.43±14.39a
      DBA 41.14±2.32c 40.61±9.81c 78.39±16.98b 18.50±4.09c 103.08±16.55a 15.75±40.67c 19.86±13.68c
      合计 Total 117.29±14.76cd 99.35±7.10cd 281.98±39.32b 70.41±29.11cd 207.66±39.46c 60.75±34.09d 982.88±33.33a
      6 BPE 15.30±1.08b 19.92±3.09b 154.93±40.35a 27.21±17.89b 30.90±14.67b 21.57±19.68b
      IPY 58.13±4.42c 135.63±34.15b 473.40±24.00a 58.36±24.38c 79.17±26.11c 1.53±0.46d 1.58±0.50d
      合计 Total 73.43±5.49d 155.55±33.34b 628.32±18.61a 85.57±9.17cd 110.08±12.10c 1.53±0.46e 23.14±19.97e
       1) 同行数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
       1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
      下载: 导出CSV

      表  6   丝瓜各部位中多环芳烃的含量1)

      Table  6   PAHs contents in various parts of Luffa cylindrica

      苯环数
      Benzene
      rings
      PAHs w/(μg·kg–1)

      Root

      Stem

      Leaf
      叶柄
      Petious
      果皮
      Peel
      果肉
      Flesh
      果瓤
      Pulp
      2 Nap 0.77±1.18b 14.40±14.60a 7.18±4.15ab 10.09±11.61ab 10.42±2.88ab 1.86±0.85ab 2.76±1.28ab
      Acy
      Ace 124.23±30.42b 172.12±64.00a 26.68±5.30c 29.56±12.17c 32.18±1.61c
      Flu 12.31±10.67b 40.01±0.10a 15.56±26.95b 6.72±5.82b 20.16±2.35ab 13.09±2.01b 20.61±0.69b
      合计 Total 137.31±35.01b 226.59±51.45a 22.01±31.53c 43.49±4.07c 30.58±2.70c 44.51±14.49c 53.56±1.85c
      3 Phe 20.16±2.55d 23.92±2.60c 33.64±1.69a 15.13±1.13e 13.99±2.05e 35.58±1.78b 49.48±0.54a
      Ant 3.58±3.10b 3.89±3.40b 12.09±0.20a 3.44±3.24b 2.95±2.56b 3.05±0.45b 3.15±0.46b
      Fla 31.73±4.34c 30.46±4.20c 41.94±1.59b 18.97±1.78d 17.01±3.24d 36.12±2.31b 62.88±1.94a
      合计 Total 55.47±3.54d 58.28±5.84d 87.67±3.45b 37.54±5.10e 33.95±2.93e 74.75±0.060c 115.51±3.01a
      4 Pyr 39.88±5.64b 40.37±1.40b 54.34±1.50a 35.11±7.40bcd 15.24±13.31de 23.10±9.49cd 24.05±6.6bc
      BaA 36.36±21.18bc 41.20±1.30bc 55.06±1.30a 30.64±10.92bcd 17.11±6.86de 20.43±5.22cde 6.50±0.54e
      Chr 14.97±4.27b 14.98±2.40b 23.06±0.58a 8.90±1.40b 13.89±9.36b 7.25±0.75b 6.87±0.11b
      合计
      Total
      91.21±16.83b 96.56±5.15b 132.47±3.26a 74.65±13.95c 46.25±16.35c 50.78±10.74c 57.06±7.11c
      5 BbF 14.51±3.14b 15.80±2.50b 147.11±74.77a 10.27±1.49b 21.60±16.27b 6.02±0.80b 5.44±0.20b
      BkF 23.93±2.90bc 42.85±4.30bc 256.64±79.21a 23.92±9.97bc 79.24±3.39b 11.71±4.96c 12.06±18.51c
      BaP 12.43±1.07b 13.50±2.40b 23.16±1.94a 6.18±0.32c 5.44±4.75c 0.93±0.32d 0.84±0.14d
      DBA 17.33±7.21b 32.99±25.30b 134.52±83.90a 37.20±0.86b 30.66±13.15b 1.45±6.64b 1.92±2.38b
      合计 Total 68.20±2.68d 105.14±28.94bc 561.43±33.79a 77.57±9.60cd 136.94±13.02b 20.11±0.15e 20.26±0.78e
      6 BPE 29.98±6.64b 33.22±12.30b 84.97±42.57a 19.03±5.19b 15.49±7.62b 9.28±2.03b 8.56±0.35b
      IPY 34.71±5.64c 330.01±42.60a 248.36±94.32b 48.70±27.62c 37.95±7.52c 21.61±3.35c 6.84±0.09c
      合计 Total 64.68±12.27b 363.24±35.02a 333.34±76.10a 67.73±12.85b 53.44±5.85b 30.89±5.03b 15.40±0.31b
       1) 同行数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
       1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
      下载: 导出CSV

      表  7   人群摄食瓜类果实产生的PAHs终生致癌风险

      Table  7   Lifetime cancer risks from PAHs for people ingesting fruits of cucurbitacae vegetables

      蔬菜种类
      Vegetable type
      儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
      男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
      苦瓜 Balsam pear 2.18×10–6 2.16×10–6 1.88×10–6 1.74×10–6 1.31×10–5 1.40×10–5 2.99×10–6 3.03×10–6
      节瓜 Chieh qua 1.22×10–5 1.21×10–5 1.05×10–5 9.77×10–6 7.31×10–5 7.84×10–5 1.67×10–5 1.69×10–5
      丝瓜 Luffa 1.85×10–6 1.84×10–6 1.60×10–6 1.48×10–6 1.11×10–5 1.19×10–5 2.54×10–6 2.58×10–6
      下载: 导出CSV

      表  8   人群摄食瓜类可食用部位产生的PAHs终生致癌风险

      Table  8   Lifetime cancer risks from PAHs for people ingesting edible portions of cucurbitacae vegetables

      蔬菜种类
      Vegetable type
      儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
      男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
      苦瓜 Balsam pear 3.41×10–7 3.40×10–7 2.95×10–7 2.73×10–7 2.05×10–6 2.20×10–6 4.77×10–7 4.75×10–7
      节瓜 Chieh qua 2.83×10–7 2.81×10–7 2.44×10–7 2.27×10–7 1.70×10–6 1.82×10–6 3.90×10–7 3.94×10–7
      丝瓜 Luffa 1.78×10–7 2.76×10–7 2.41×10–7 2.23×10–7 1.67×10–6 1.80×10–6 3.67×10–7 3.88×10–7
      下载: 导出CSV

      表  9   人群摄食黄瓜产生的PAHs终生致癌风险

      Table  9   Lifetime cancer risk from PAHs for people ingesting Cucumis sativus

      黄瓜部位
      Cucumber part
      儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
      男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
      果实 Fruit 1.01×10–5 9.99×10–6 8.68×10–6 8.05×10–6 6.02×10–5 6.47×10–5 1.38×10–5 1.40×10–5
      果肉和果瓤 Flesh and pulp 5.21×10–7 5.18×10–7 4.50×10–7 4.18×10–7 3.21×10–6 3.35×10–6 4.70×10–7 4.75×10–7
      果肉 Flesh 2.83×10–7 2.81×10–7 2.44×10–7 2.27×10–7 1.70×10–6 1.82×10–6 3.90×10–7 3.94×10–7
      下载: 导出CSV
    • [1] 李新荣, 赵同科, 于艳新, 等. 北京地区人群对多环芳烃的暴露及健康风险评价[J]. 农业环境科学学报, 2009, 28(8): 1758-1765. doi: 10.3321/j.issn:1672-2043.2009.08.036
      [2] 赵文昌, 程金平. 环境中多环芳烃(PAHs)的来源与监测分析方法[J]. 环境科学与技术, 2006, 29(3): 105-108. doi: 10.3969/j.issn.1003-6504.2006.03.042
      [3] 宋冠群, 林金明. 环境样品中多环芳烃的前处理技术[J]. 环境科学学报, 2005, 25(10): 1287-1296. doi: 10.3321/j.issn:0253-2468.2005.10.001
      [4]

      BUEHLER S, HITES R A. The Great Lakes’ integrated atmospheric deposition network[J]. Environ Sci Technol, 2002, 36(17): 354A-359A. doi: 10.1021/es0224030

      [5] 秦宁, 何伟, 王雁, 等. 巢湖水体和水产品中多环芳烃的含量与健康风险[J]. 环境科学学报, 2013, 33(1): 230-239.
      [6]

      GUILLEN M D, SOPELANA P, PARTEARROYO M A. Food as a source of polycyclic aromatic carcinogens.[J]. Rev Environ Health, 1997, 12(3): 133-146.

      [7]

      ZUO Q, LIN H, ZHANG X L, et al. A two-compartment exposure device for foliar uptake study.[J]. Environ Pollut, 2006, 143(1): 126-128. doi: 10.1016/j.envpol.2005.11.004

      [8]

      LISA M. CAMICHAEL T, RUSSELL F, et al. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated Soils[J]. Environ Sci Technol, 1997, 31(1): 126-132. doi: 10.1021/es9602105

      [9] 刘永波, 薛瑞芳, 崔磊. 超声波提取−气相色谱−质谱联用法测定城市污水处理厂脱水污泥中16种多环芳烃[J]. 化学分析计量, 2015, 24(6): 77-80. doi: 10.3969/j.issn.1008-6145.2015.06.020
      [10] 刘庆学, 王磊, 安彩秀, 等. 硫酸净化法测定土壤中的六六六、滴滴涕及多环芳烃[J]. 分析试验室, 2009, 28(S2): 116-121.
      [11] 龙明华, 龙彪, 唐璇, 等. 南宁市不同区域五种蔬菜的多环芳烃含量分析[J]. 北方园艺, 2018(5): 7-14.
      [12] 龙彪. 南宁市菜地土壤及蔬菜中多环芳烃的含量及来源分析[D]. 南宁: 广西大学, 2017.
      [13]

      NISBET I C, LAGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regul Toxicol Pharmacol, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X

      [14]

      MASCLET P, MOUVIER G, Nikolaou K. Relative decay index and sources of polycyclic aromatic hydrocarbons[J]. Atmos Environ, 1986, 20(3): 439-446. doi: 10.1016/0004-6981(86)90083-1

      [15] 翟凤英, 杨晓光. 中国居民营养与健康状况调查报告: 膳食与营养素摄入状况[M]. 北京: 人民卫生出版社, 2006.
      [16] 张珏坪. 广西南宁市蔬菜种子产业发展现状与对策研究[D]. 南宁: 广西大学, 2014.
      [17]

      ZHAO Z, ZHANG L, CAI Y, et al. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment[J]. Ecotoxicol Environ Saf, 2014, 104(2): 323-331.

      [18]

      XIA Z, DUAN X, QIU W, et al. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China[J]. Sci Total Environ, 2010, 408(22): 5331-5337. doi: 10.1016/j.scitotenv.2010.08.008

      [19]

      BRUNE H, DEUTSCH-WENZEL R P, HABS M, et al. Investigation of the tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats[J]. J Cancer Res Clin Oncol, 1981, 102(2): 153-157. doi: 10.1007/BF00410666

      [20] 杨晓光, 翟凤英, 朴建华, 等. 中国居民营养状况调查[J]. 中国预防医学杂志, 2010, 11(1): 5-7.
      [21] 赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷)概要[M]. 北京: 中国环境出版社, 2014.
      [22]

      LIAO C M, CHANG K C. Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples[J]. Chemosphere, 2006, 63(9): 1610-1619. doi: 10.1016/j.chemosphere.2005.08.051

      [23] 秦宁, 朱樱, 吴文婧, 等. 多环芳烃在小白洋淀挺水植物中的分布、组成及其影响因素[J]. 湖泊科学, 2010, 22(1): 49-56.
      [24] 程琪琪, 葛蔚, 李敬锁, 等. 辣椒中多环芳烃的累积特征及健康风险评估[J]. 环境化学, 2018(2): 229-238.
      [25] 郭雪. 上海市郊区土壤−蔬菜系统中多环芳烃污染效应研究[D]. 上海: 华东师范大学, 2015.
      [26]

      SINONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environ Sci Technol, 1995, 29(12): 2905-2914. doi: 10.1021/es00012a004

      [27]

      MOECKEL C, THOMAS G O, BARBER J L, et al. Uptake and storage of PCBs by plant cuticles[J]. Environ Sci Technol, 2008, 42(1): 100-105. doi: 10.1021/es070764f

      [28]

      WINGFORS H, LINDSTROM G, BAVEL B V, et al. Multivariate data evaluation of PCB and dioxin profiles in the general population in Sweden and Spain[J]. Chemosphere, 2000, 40(9/10/11): 1083-1088.

      [29]

      WILD S R, JONES K C. Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge amended soil[J]. J Environ Qual, 1992, 21(2): 217-225.

      [30]

      SOCEANU A, DOBRINAS S, POPESCU V. Polycyclic aromatic hydrocarbons in Romanian body foods and fruits[J]. Polycycl Aromat Comp, 2016, 36(4): 364-375.

      [31] 杨慧仙. 种子大小和海拔对青藏高原东北缘常见植物种子主要营养成分含量的影响[D]. 兰州: 兰州大学, 2016.
      [32] 焦杏春, 介崇禹, 丁力军, 等. 多环芳烃在水稻植株中的分布[J]. 应用与环境生物学报, 2005, 11(6): 657-659. doi: 10.3321/j.issn:1006-687X.2005.06.001
      [33]

      TERZAGHI E, ZACCHELLO G, SCACCHI M, et al. Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest[J]. Sci Total Environ, 2015, 505: 329-337. doi: 10.1016/j.scitotenv.2014.09.108

      [34]

      HOWSAM M, JONES K C, INESON P. PAHs associated with the leaves of three deciduous tree species. I : Concentrations and profiles[J]. Environ Pollut, 2000, 108(3): 413-424. doi: 10.1016/S0269-7491(99)00195-5

      [35] 杨博. 城市典型植物叶片中PAHs的时空分布特征及迁移转化机理[D]. 上海: 华东师范大学, 2017.
      [36] 李艳, 顾华, 黄冠华, 等. 北京东南郊灌区多环芳烃污染风险与人体健康风险评估[J]. 农业机械学报, 2017, 48(9): 237-249.
      [37]

      TAO S, CUI Y H, XU F L, et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin[J]. Sci Total Environ, 2004, 320(1): 11-24. doi: 10.1016/S0048-9697(03)00453-4

      [38] 郜红建, 魏俊岭, 马静静, 等. 安徽省典型城市周边土壤−蔬菜中PAHs的污染特征[J]. 农业环境科学学报, 2012, 31(10): 1913-1919.
      [39]

      URBAT M, LEHNDORFF E, SCHWARK L. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler: Part Ⅰ: Magnetic properties[J]. Atmos Environ, 2004, 38(23): 3781-3792. doi: 10.1016/j.atmosenv.2004.03.061

      [40] 解莹然, 张娟, 李乐, 等. 北京市常用常绿树种冬季叶片多环芳烃含量及其富集特征[J]. 北京林业大学学报, 2017, 39(10): 95-100.
      [41]

      GUNTHER F A, BUZZETTI F, WESTLAKE W E. Residue behavior of polynuclear hydrocarbons on and in oranges[J]. Residue Rev, 1967, 17: 81-104.

      [42] 龙明华, 龙彪, 梁勇生, 等. 南宁市蔬菜基地土壤多环芳烃含量及来源分析[J]. 中国蔬菜, 2017(3): 52-57.
      [43]

      SCHROLL R, BIERLING B, CAO G, et al. Uptake pathways of organic chemicals from soil by agricultural plant[J]. Chemosphere, 1994, 28(2): 297-303. doi: 10.1016/0045-6535(94)90126-0

      [44] 董继元, 刘兴荣, 张本忠, 等. 上海市居民暴露于多环芳烃的健康风险评价[J]. 生态环境学报, 2015, 24(1): 126-132.
      [45] 葛蔚, 程琪琪, 柴超, 等. 青岛市城郊蔬菜中多环芳烃污染特征和健康风险评估[J]. 环境科学学报, 2017, 37(12): 4772-4778.
      [46] 吴敏敏, 夏忠欢, 张倩倩, 等. 南京市蔬菜中多环芳烃污染特征及健康风险分析[J]. 地球与环境, 2017, 45(4): 447-454.
      [47] 殷婧, 夏忠欢, 周彦池, 等. 临汾市售蔬菜中多环芳烃污染特征及致癌风险分析[J]. 生态毒理学报, 2016, 11(3): 265-271.
      [48] 王丽萍, 夏忠欢, 吴敏敏, 等. 徐州市售蔬菜中多环芳烃污染与健康危害[J]. 生态毒理学报, 2017, 12(3): 526-534.
    图(1)  /  表(9)
    计量
    • 文章访问数:  1517
    • HTML全文浏览量:  7
    • PDF下载量:  1914
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-06-29
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2019-03-09

    目录

      /

      返回文章
      返回