• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

玉米淀粉合成酶SSⅡa启动子的克隆及功能分析

陈展宇, 王阔, 王晓梅, 刘相国, 崔喜艳

陈展宇, 王阔, 王晓梅, 刘相国, 崔喜艳. 玉米淀粉合成酶SSⅡa启动子的克隆及功能分析[J]. 华南农业大学学报, 2017, 38(1): 15-22. DOI: 10.7671/j.issn.1001-411X.2017.01.004
引用本文: 陈展宇, 王阔, 王晓梅, 刘相国, 崔喜艳. 玉米淀粉合成酶SSⅡa启动子的克隆及功能分析[J]. 华南农业大学学报, 2017, 38(1): 15-22. DOI: 10.7671/j.issn.1001-411X.2017.01.004
CHEN Zhanyu, WANG Kuo, WANG Xiaomei, LIU Xiangguo, CUI Xiyan. Cloning and function analysis of starch synthase SSⅡa promoter in maize[J]. Journal of South China Agricultural University, 2017, 38(1): 15-22. DOI: 10.7671/j.issn.1001-411X.2017.01.004
Citation: CHEN Zhanyu, WANG Kuo, WANG Xiaomei, LIU Xiangguo, CUI Xiyan. Cloning and function analysis of starch synthase SSⅡa promoter in maize[J]. Journal of South China Agricultural University, 2017, 38(1): 15-22. DOI: 10.7671/j.issn.1001-411X.2017.01.004

玉米淀粉合成酶SSⅡa启动子的克隆及功能分析

基金项目: 

国家自然科学基金 31200611

吉林省应用基础研究重点实验室开放课题 20130102066JC

转基因生物新品种培育重大专项 2014ZX0801004B

详细信息
    作者简介:

    陈展宇(1972—),男,副教授,博士,E-mail: chenzhanyu2000@sina.com

    通讯作者:

    崔喜艳(1971—),女,教授,博士,E-mail: cuixiyan2005@163.com

  • 中图分类号: S513

Cloning and function analysis of starch synthase SSⅡa promoter in maize

  • 摘要:
    目的 

    克隆玉米Zea mays淀粉合成酶SSⅡa启动子,并分析其功能,为进一步研究和应用SSⅡa启动子奠定基础。

    方法 

    通过NCBI上公布的玉米基因组序列,在网站MaizeGDB上BLAST查找到SSⅡa 5′侧翼序列,利用PCR方法从玉米B73中克隆SSⅡa启动子;通过PlantCare在线分析启动子顺式作用元件,用特异性引物分别克隆出长度为1 407、867、633、483和365 bp的片段,与植物表达载体pCAMBIA3301连接,构建5种5′缺失体的植物表达载体,命名为P1、P2、P3、P4和P5。用农杆菌介导法转化拟南芥Arabidopsis thaliana,获得转基因拟南芥。

    结果 

    以玉米B73基因组DNA为模板,用特异性引物SSⅡaF/SSⅡaR进行扩增,得到2 526 bp序列;除草剂筛选的阳性拟南芥植株PCR验证均检测出gus基因;GUS组织化学分析表明,5种类型启动子构建的表达载体在成熟期叶片、果荚中均显蓝色;gus基因定量分析表明,成熟期5种转基因拟南芥叶片中, gus基因表达量P1最高,其他基本一致;种子中gus基因表达量P1和P2相近,且高于P3、P4和P5。

    结论 

    成功克隆玉米SSⅡa启动子;构建的5种SSⅡa启动子缺失体表达载体在转基因拟南芥中均具有活性,长度为1 407 bp(P1)和867 bp(P2)的启动子具有胚乳特异性。

    Abstract:
    Objective 

    To clone maize (Zea mays) starch synthase SSⅡa promoter, analyze its function, and provide a basis for its future research and application.

    Method 

    The SSⅡa 5′ flanking sequence was found on Maize GDB by BLASTing the maize genome sequence published on NCBI, and the SSⅡa promoter was cloned from maize B73 using PCR. We analyzed the cis elements of the promoter using PlantCare. Fragments of 1 407, 867, 633, 483, and 365 bp were cloned with specific primers, and were inserted into the plant expression vector pCAMBIA3301, respectively. Five plant expression vectors with different 5′ deletions of the SSⅡa promoter were constructed and named P1, P2, P3, P4 and P5.The transgenic Arabidopsis thaliana plants were obtained through Agrobacterium-mediated transformation.

    Result 

    A DNA fragment of 2 526 bp was obtained by PCR amplification with maize B73 genome DNA as template and SSⅡaF/SSⅡaR as specific primers. The positive A.thaliana plants, which were screened by herbicide, had gus gene by PCR detection. The histochemical analysis of GUS showed that the expression vectors of five promoters were blue in leaves and pods at maturity. The quantitative analysis of gus gene showed that among five transgenic A.thaliana at maturity, the expression level of P1 in leaves was the highest and the others were basically the same, and the expression levels of P1 and P2 in seeds were similar, both being higher than those of P3, P4 and P5.

    Conclusion 

    The maize SSⅡa promoter has been successfully cloned. The five constructed expression vectors with different 5′ deletions of the SSⅡa promoter all have activities in transgenic A.thaliana, and the promoters with the length of 1 407 bp (P1) and 867 bp (P2) have endosperm specificity.

  • 图  1   SSⅡa启动子克隆和PCR验证的电泳结果

    M:DL2000 DNA Marker;1~3:SSⅡa启动子。

    Figure  1.   Electrophoresis results of SSⅡa promoter cloning and PCR amplification

    图  2   玉米SSⅡa启动子的序列分析

    附有黄色底纹的序列为相关顺式作用元件,由上至下红色方框内依次为克隆突变碱基、胚乳特异性表达功能元件、参与抗旱诱导的MYB结合位点、TATA-box、SSⅡa基因起始密码子ATG。

    Figure  2.   Sequence analysis of maize SSⅡa promoter

    图  3   不同长度SSⅡa启动子片段的扩增、重组载体PCR验证及双酶切验证结果

    M:DL2000 DNA Marker;1~5分别为缺失体P1、P2、P3、P4和P5。

    Figure  3.   Amplification of SSⅡa promoter fragments of different length, PCR verification of recombinant vectors and double enzyme digestion verification

    图  4   不同表达载体gus基因PCR扩增验证电泳结果

    M:DL2000 DNA Marker;1~2为缺失体P5,3~4为缺失体P4,5~6为缺失体P3,7~8为缺失体P2,9~10为缺失体P1;CK:非转基因对照。

    Figure  4.   PCR detection results of gus gene in different expression vectors by electrophoresis

    图  5   成熟期转基因拟南芥植株叶片和果荚GUS组织化学染色

    Figure  5.   Histochemical analysis of GUS activities in leaves and pods of transgenic Arabidopsis thaliana plant at maturity

    图  6   成熟期转基因拟南芥叶片和种子中gus基因的相对表达量

    Figure  6.   Relative expression levels of gus gene in leaves and seeds of transgenic Arabidopsis thaliana plant at maturity

    表  1   SSⅡa启动子区顺式作用元件

    Table  1   Cis-acting elements of SSⅡa promoter

    元件名称 序列 元件功能 元件位置
    CAAT-box CAATT、CAAAT、CAAT 启动子和增强子区常见的顺式作用元件 -2 380、-1 094、-2 088、-1 165、-1 377、-1 166、-1 095、-1 915、-2 013、-1 032、-815
    CAT-box GCCACT 与分生组织表达相关的作用元件 -1 225、-546、-127
    CE3 GACGCGTGTC 参与ABA和VP1响应的作用元件 -2 430
    CG-motif CCATGGGG 光响应元件 -1 945
    G-box CACATGG 光响应元件 -1 601、-392
    I-box GGATAAGGTG 光响应元件 -2 419
    MBS CGGTCA MYB结合位点 -2 452
    Skn-1-motif GTCAT 胚乳表达所需的作用元件 -1 497、-1 087
    GCN4-motif CAAGCCA 胚乳表达调控作用元件 -875
    Sp1 CC(G/A)CCC 光响应元件 -1 279、-1 145
    TATA-box TAATA、TATA、ATATAA、 核心启动子元件(在转录起始位点上游) -1 850、-2 028、-1 389、-1 847、-1 931、-1 848、-2 030、-529、-508
    TC-rich repeats ATTTTCTCCA 参与防御和应激反应的作用元件 -1 815
    TGA-element AACGAC 生长素响应的作用元件 -1 256、-247
    TGACG-motif TGACG 参与茉莉酸甲酯响应的作用元件 -2 458、-1 198、-754
    ABRE CACGTG 参与脱落酸响应的元件 -392
    CGTCA-motif CGTCA 参与茉莉酸甲酯响应的作用元件 -213
    GARE-motif TCTGTTG 赤霉素应答作用元件 -1 029
    HSE AAAAAATTTC 参与热胁迫应答的作用元件 -824
    MBS CAACTG 参与抗旱诱导的MYB结合位点 -1 000、-761
    O2-site GATGATGTGG 参与玉米醇溶蛋白代谢调控的作用元件 -1 044
    motif IIb CCGCCGCGCT 脱落酸响应元件 -796
    下载: 导出CSV
  • [1]

    MÜLLER-RÖBER B T, KOβMANN J, HANNAH L C, et al. One of two different ADP-glucose Pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose[J]. Mol Gen Genet, 1990, 224(1): 136-146. doi: 10.1007/BF00259460

    [2]

    NAOMI S S, ICHIRO M. Constitutive promoters available for trans-gene expression instead of CaMV35S RNA promoter: Arabidopsis promoters of tryptophan synthase protein subunit and phytochrome B[J]. Plant Biotechnol-nar, 2002, 19(1): 19-26. doi: 10.5511/plantbiotechnology.19.19

    [3] 覃鸿妮, 蔡一林, 孙海燕, 等.种植密度对不同株型玉米蔗糖代谢和淀粉合成相关酶活性的影响[J].中国生态农业学报, 2010, 18(6):1183-1188. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201006007.htm
    [4] 崔喜艳, 胡广宇, 孙小杰, 等.1个新的玉米半透明皱缩胚乳突变体的遗传分析及基因定位[J].华南农业大学学报, 2014, 35(5) :31-35. doi: 10.7671/j.issn.1001-411X.2014.05.006
    [5] 张军杰, 黄玉碧.玉米可溶性淀粉合成酶研究进展[J].玉米科学, 2006, 14(6):151-154. http://youxian.cnki.com.cn/yxdetail.aspx?filename=FZZW20170418001&dbname=CAPJ2015
    [6] 王振华, 亢伟民, 张新.高淀粉玉米及其开发利用[J].玉米科学, 2002, 10(3):90-92. http://www.cnki.com.cn/Article/CJFDTOTAL-YMKX200203033.htm
    [7] 彭泽斌, 田志国.高淀粉玉米的产业化潜力分析[J].作物杂志, 2003(6):10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ200306003.htm
    [8]

    HARN C, KNIGHT M, RANAKRISHNAN A, et al. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm[J]. Plant Mol Biol, 1998, 37(4): 639-649. doi: 10.1023/A:1006079009072

    [9]

    KNIGHT M E, HARN C, LILLEY C E, et al. Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli [J]. Plant J, 1998, 14(5): 613-622. doi: 10.1046/j.1365-313X.1998.00150.x

    [10]

    GAO M, WANAT J, STINARD P S, et al. Characterization of dull1, a maize gene coding for a novel starch synthase[J]. Plant Cell, 1998, 10(3): 399-412. doi: 10.1105/tpc.10.3.399

    [11]

    BLAUTH S L, YAO Y, KLUCINEC J D, et al. Identification of mutator insertional mutants of starch-branching enzyme 2a in corn[J]. Plant Physiol, 2001, 125(3): 1396-1405. doi: 10.1104/pp.125.3.1396

    [12] 相恒佐. 毛百合GPAT基因启动子的克隆和功能鉴定[D]. 沈阳: 沈阳农业大学, 2014: 15-16.
    [13] 佟珊珊. 根特异性启动子表达AAP1-bar双价基因在玉米新材料创制中的应用研究[D]. 长春: 吉林农业大学, 2014.
    [14]

    JEFERSON G, RLCARDO J.S, ARTHUR G F, et al. Iron homeostasis related genes in rice[J].Genet Mol Biol, 2003, 26(4): 477-497. doi: 10.1590/S1415-47572003000400012

    [15]

    THOMAS D S, KENNETH J L. Analyzing real-time PCR data by the comparative CT method[J].Nature, 2008, 3(6): 1101-1108.

    [16] 崔喜艳, 陈众峰, 范贝, 等.栽培大豆rbcS启动子的克隆及在转基因烟草中功能缺失分析[J]西北农林科技大学学报, 2015, 43(5): 114-121, 128. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201505018.htm
    [17] 曾礼华, 汪瀚宇, 谢程程, 等.玉米淀粉合成酶基因GBSS启动子的克隆与鉴定[J].植物生理学报, 2015, 51 (9): 1433-1439. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201509012.htm
    [18] 任红丽, 黄玉碧. 玉米淀粉合成酶Ⅰ基因(zsS1)启动子载体构建及胚乳瞬时表达[D]. 雅安: 四川农业大学, 2005.
    [19]

    HU Y F, LI Y P, ZHANG J, et al.PzsS3a, a novel endosperm specific promoter from maize (Zea mays L.) induced by ABA[J]. Biotechnol Lett, 2011, 33(7):1465-1471. doi: 10.1007/s10529-011-0582-z

    [20]

    LI Q F, SUN S S, LIU Q Q. Characterization of the spatial and temporal expression of the OsSSII-3 gene encoding a key soluble starch synthase in rice[J].J Sci Food Agr, 2013, 93(13):3184-3190. doi: 10.1002/jsfa.2013.93.issue-13

图(6)  /  表(1)
计量
  • 文章访问数:  1345
  • HTML全文浏览量:  10
  • PDF下载量:  1319
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-30
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2017-01-09

目录

    /

    返回文章
    返回