• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

“互联网+”精准农业航空服务平台体系架构设计与实践

张波, 黄志宏, 兰玉彬, 巫莉莉, 何斌斌, 曾鸣

张波, 黄志宏, 兰玉彬, 巫莉莉, 何斌斌, 曾鸣. “互联网+”精准农业航空服务平台体系架构设计与实践[J]. 华南农业大学学报, 2016, 37(6): 38-45. DOI: 10.7671/j.issn.1001-411X.2016.06.006
引用本文: 张波, 黄志宏, 兰玉彬, 巫莉莉, 何斌斌, 曾鸣. “互联网+”精准农业航空服务平台体系架构设计与实践[J]. 华南农业大学学报, 2016, 37(6): 38-45. DOI: 10.7671/j.issn.1001-411X.2016.06.006
ZHANG Bo, HUANG Zhihong, LAN Yubin, WU Lili, HE Binbin, ZENG Ming. "Internet+" agricultural aviation services platform architecture design and practice[J]. Journal of South China Agricultural University, 2016, 37(6): 38-45. DOI: 10.7671/j.issn.1001-411X.2016.06.006
Citation: ZHANG Bo, HUANG Zhihong, LAN Yubin, WU Lili, HE Binbin, ZENG Ming. "Internet+" agricultural aviation services platform architecture design and practice[J]. Journal of South China Agricultural University, 2016, 37(6): 38-45. DOI: 10.7671/j.issn.1001-411X.2016.06.006

“互联网+”精准农业航空服务平台体系架构设计与实践

基金项目: 

国家重点研发计划项目 2016YFD0200700

863计划项目 2013AA102303

详细信息
    作者简介:

    张波(1973—),男,高级工程师,E-mail:zb@scau.edu.cn

    通讯作者:

    兰玉彬(1961—),男,教授,博士,E-mail: ylan@scau.edu.cn

  • 中图分类号: S25; S126

"Internet+" agricultural aviation services platform architecture design and practice

  • 摘要:
    目的 

    为农业航空植保作业服务商和终端农户提供沟通和服务的桥梁,推进农业航空标准的建立,推动科研院校的成果转化,对全国植保无人机实施跟踪和监管,促进农业航空市场规范,普及农业航空技术在精准农业中的应用,实现农药化肥施药零增长。

    方法 

    利用“互联网+”的思维和方法,结合我国农业航空的发展状况与农业航空服务的特点,设计1套“互联网+”精准农业航空服务平台体系架构。采用大数据技术、云计算技术、移动应用技术以及HTML5等新一代信息技术,进行精准农业航空服务平台的底层架构设计、服务作业流程设计、用户界面设计以及数据库设计等。

    结果 

    建立了精准农业航空服务的互联网综合服务平台,包含植保服务管理、作业效果评估管理、无人机检测管理、植保无人机监管、大数据应用等系统功能。它具有良好的平台特性、用户特性、大数据特性和扩展性。

    结论 

    平台的体系架构能满足农业航空植保用户、植保服务商对植保作业服务简化操作的需求,同时实现了政府和有关部门对数据进行信息化有效管理的目的,并且通过数据分析与挖掘等技术手段提供多种增值服务,实现精准农业航空服务生态圈的有效良性循环,让农业航空更好地为我国农业现代化服务。

    Abstract:
    Objective 

    To provide communication services for agricultural aviation plant protection service providers and terminal farmers, accelerate the establishment of agricultural aviation standards, promote the transformation of achievements in scientific research institutions, implement the national plant protection UAV tracking and monitoring, promote the normalization of agricultural aviation market, popularize agricultural aviation applications in precision agriculture, and help achieve zero growth in pesticides and fertilizers application.

    Method 

    Based on the thoughts and methods of the "Internet +", combined with the characteristics of agricultural aviation and the services development in China, an "Internet +" agricultural aviation services platform was designed. New generation of information technologies, such as big data, cloud computing, mobile applications and HTML5 were applied for the technical design in developing the fundamental platform architecture design of agricultural aviation services, the service work-flow design, UI interface design, and database design.

    Result 

    The advanced and integrated agricultural aviation services platform was established, including plant protection services management, operation effectiveness evaluation, UAV detection, plant protection UAV regulation, and big data application.The platform had good properties of plaform, user and big data, and excellent expansibility.

    Conclusion 

    The architecture design of the platform can meet the requirements of agricultural aviation users and service providers to simplify the plant protection operation, and achieve the purpose of government to effectively manage information as well. At last, through data analysis based on multi-mining techniques, this design provides various value-added services, and ultimately realizes a virtuous circle of agricultural aviation services ecosystem effectively with better services for agricultural modernization in China.

  • 图  1   “互联网+”精准农业航空平台服务体系

    Figure  1.   "Internet+" precision agriculture aviation services platform (IPAASP) architecture

    图  2   “互联网+”精准农业航空平台框架结构

    Figure  2.   "Internet+" precision agriculture aviation services platform (IPAASP) scheme

    图  3   植保作业服务流程

    Figure  3.   Plant protection service work-flow

    图  4   “互联网+”精准农业航空服务平台效果图

    Figure  4.   Visual interface of "Internet+" precision agriculture aviation services platform

    图  5   基于WebGIS的植保无人机实时监控

    Figure  5.   Real time monitoring of plant protection based on WebGIS

    图  6   水稻植保作业大数据应用

    Figure  6.   Big data application of rice plant protection operation

    图  7   “互联网+”精准农业航空服务平台移动版

    Figure  7.   Mobile version of "Internet+" precision agriculture aviation services platform

  • [1] 罗锡文.对加快发展我国农业航空技术的思考[J].农业技术与装备, 2014(5): 7-15. http://d.old.wanfangdata.com.cn/Periodical/njtgyaq201405002
    [2] 周志艳, 臧英, 罗锡文, 等.中国农业航空植保产业技术创新发展战略[J].农业工程学报, 2013, 29(24): 1-10. doi: 10.3969/j.issn.1002-6819.2013.24.001
    [3] 中华人民共和国国务院. 国务院关于积极推进"互联网+"行动的指导意见[N]. 经济日报, 2015-07-05(1).
    [4]

    TESKE M E, BIRD S L, ESTERLY D M, et al. AgDrift®: A model for estimating near-field spray drift from aerial applications[J]. Environ Toxicol Chem, 2002, 21(3): 659-671. doi: 10.1002/etc.v21:3

    [5]

    ZHU H P, FOX R D, OZKAN H E. A windows version of DRIFTSIM for estimating drift distances of droplets[R/OL]//American Society of Agricultural and Biological Engineers. 2005 ASAE Annual International Meeting, Tampa, Florida [2016-08-03]. http://elibrary.asabe.org/abstract.asp?aid=19884.

    [6]

    LAN Y, THOMSON S J, HUANG Y, et al. Current status and future directions of precision aerial application for site-specific crop management in the USA[J]. Comput Electron Agr, 2010, 74(1): 34-38. doi: 10.1016/j.compag.2010.07.001

    [7]

    WONG K, SWITZER J. Drone flight operations to improve as the Weather Company, an IBM Business, and AirMap join to deliver real-time hyperlocal weather data [DB/OL]. (2016-08-03)[2016-08-04]. https://www-03.ibm.com/press/us/en/pressrelease/50304.wss.

    [8]

    SUGIURA R, FUKAGAWA T, NOGUCHI N, et al. Field information system using an agricultural helicopter towards precision farming[C/OL]. IEEE Xplore, 2003 [2016-08-03]. http://ieeexplore.ieee.org/document/1225491/metrics.

    [9] "互联网+农业"在国外是怎么做的[J]. 农业工程技术, 2016, 36(3): 29-31.
    [10]

    CAROLAN M. Publicising food: Big data, precision agriculture, and co-experimental techniques of addition[J/OL]. Sociol Rural, 2016[2016-08-03]. http://onlinelibrary.wiley.com/doi/10.1111/soru.12120/pdf.

    [11]

    SONKA S, CHENG Y. Precision Agriculture: Not the same as big data but…[J/OL]. Farmdoc Daily, 2015[2016-08-03]. http://farmdocdaily.illinois.edu/pdf/fdd051115.pdf.

    [12]

    MINTERT J R, WIDMAR D, LANGEMEIER M, et al. The challenges of precision agriculture: is big data the answer?[R/OL]// The Southern Agricultural Economics Association (SAEA) Annual Meeting, Texas, February 6-9, 2015 [2016-08-03]. http://ageconsearch.umn.edu/bitstream/230057/2/THE%20CHALLENGES%20OF%20PRECISION%20AGRICULTURE_manuscript_SAEA_2016.pdf.

    [13]

    MARK T B, GRIFFIN T W, WHITACRE B E. The role of wireless broadband connectivity on 'big data'and the agricultural industry in the united states and australia[J]. Int Food Agribus Manage Rev, 2016: 19(A):43-56. https://ideas.repec.org/a/ags/ifaamr/240695.html

    [14] 秦学敏, 陈位政, 谭立伟, 等.互联网思维下农业大数据的需求、现状与发展思考[J].农业工程技术, 2015, 35(36): 44-47. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nsgj201536025&dbname=CJFD&dbcode=CJFQ
    [15] IRIS, ALINA. "互联网+农业"报告:一个近10万亿规模的市场, 正被这些公司分食[J].农业工程技术, 2015, 35(24): 16-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nsgj201524005&dbname=CJFD&dbcode=CJFQ
    [16] 徐鹏, 陈思, 苏森.互联网应用PaaS平台体系结构[J].北京邮电大学学报, 2012, 35(1): 120-124. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjyd201201029&dbname=CJFD&dbcode=CJFQ
    [17] 卫景芳, 马军, 侯宝英, 等.云计算农田会商平台规划和设计[J].计算机系统应用, 2016, 25(6): 40-43. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xtyy201606006&dbname=CJFD&dbcode=CJFQ
    [18] 张波, 罗锡文. ICT在精细农业中的应用与展望[C]//CSAE. 中国农业工程学会2011年学术年会. 重庆: CSAE, 2011: 28-31.
    [19] 蔡丽霞. 基于大数据处理技术Hadoop平台玉米精准施肥智能决策系统的研究[D]. 长春: 吉林农业大学, 2015.
    [20]

    SONKA S. Big Data: Fueling the next evolution of agricultural innovation[J]. J Innov Manage, 2016, 4(1): 114-136.

    [21] 王丽萍. 基于互联网新技术的科技统计服务平台设计与实现[D]. 北京: 中国科学院大学, 2015.
    [22] 孟祥宝, 谢秋波, 刘海峰, 等.农业大数据应用体系架构和平台建设[J].广东农业科学, 2014, 41(14): 173-178. doi: 10.3969/j.issn.1004-874X.2014.14.038
    [23]

    ANTLE J, CAPALBO S, HOUSTON L. Using big data to evaluate agro-environmental policies[J/OL]. Choices, 2015, 30(3): 1-8[2016-08-03]. http://ageconsearch.umn.edu/bitstream/210007/2/cmsarticle_456.pdf.

    [24] 张波, 黄志宏, 张晓鹏, 等.基于IA架构的大型数据库集群系统的研究与应用[J].计算机工程与设计, 2006, 27(17): 3187-3188. doi: 10.3969/j.issn.1000-7024.2006.17.025
    [25] 张波, 巫莉莉, 周敏.基于Web使用挖掘的用户行为分析[J].计算机科学, 2006, 33(8): 213-214. http://d.old.wanfangdata.com.cn/Periodical/jsjkx200608055
    [26] 罗治情, 陈娉婷, 官波, 等.基于HTML5+WebRTC的农业专家在线教学系统的设计与实现[J].农业网络信息, 2016(3): 91-94. http://d.old.wanfangdata.com.cn/Periodical/jsjyny201603026
  • 期刊类型引用(3)

    1. 孙玉彤,胡伟. 纳米氧化锌浸种对水稻小麦玉米幼苗素质的影响. 农业技术与装备. 2025(02): 171-172+177 . 百度学术
    2. 田雪军,徐佩琦,吴晶晶,徐艳,熊兴鹏. 外源褪黑素对玫瑰高温胁迫的缓解效应. 山西农业大学学报(自然科学版). 2024(01): 34-42 . 百度学术
    3. 王为木,张晓瑾,刘慧,董姝楠,齐张蓉. 2018—2022年“干旱胁迫对植物的影响研究”可视化分析. 灌溉排水学报. 2024(07): 1-10 . 百度学术

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  1401
  • HTML全文浏览量:  12
  • PDF下载量:  1569
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-08-04
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2016-11-09

目录

    /

    返回文章
    返回