• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

大豆根际溶磷菌分离鉴定及溶磷过程中有机酸的分泌

杨美英, 王春红, 武志海, 岳胜天, 付丽, 刘晶晶, 孙合美

杨美英, 王春红, 武志海, 岳胜天, 付丽, 刘晶晶, 孙合美. 大豆根际溶磷菌分离鉴定及溶磷过程中有机酸的分泌[J]. 华南农业大学学报, 2016, 37(5): 38-44. DOI: 10.7671/j.issn.1001-411X.2016.05.007
引用本文: 杨美英, 王春红, 武志海, 岳胜天, 付丽, 刘晶晶, 孙合美. 大豆根际溶磷菌分离鉴定及溶磷过程中有机酸的分泌[J]. 华南农业大学学报, 2016, 37(5): 38-44. DOI: 10.7671/j.issn.1001-411X.2016.05.007
YANG Meiying, WANG Chunhong, WU Zhihai, YUE Shengtian, FU Li, LIU Jingjing, SUN Hemei. Identification of PSB in soybean rhizosphere and secretion of organic acids in the process of phosphate solubilizing[J]. Journal of South China Agricultural University, 2016, 37(5): 38-44. DOI: 10.7671/j.issn.1001-411X.2016.05.007
Citation: YANG Meiying, WANG Chunhong, WU Zhihai, YUE Shengtian, FU Li, LIU Jingjing, SUN Hemei. Identification of PSB in soybean rhizosphere and secretion of organic acids in the process of phosphate solubilizing[J]. Journal of South China Agricultural University, 2016, 37(5): 38-44. DOI: 10.7671/j.issn.1001-411X.2016.05.007

大豆根际溶磷菌分离鉴定及溶磷过程中有机酸的分泌

基金项目: 

国家自然科学基金 31201687

详细信息
    作者简介:

    杨美英(1974—),女,副教授,博士,E-mail: jlaumeiying@163.com

  • 中图分类号: S828

Identification of PSB in soybean rhizosphere and secretion of organic acids in the process of phosphate solubilizing

  • 摘要:
    目的 

    明确吉林省地区大豆Glycine max根际溶磷菌的种类及溶磷特点。

    方法 

    利用溶磷圈法筛选溶磷菌,16S rDNA序列测定和Vitek2生理生化系统对菌株进行分析鉴定。测定菌株生长量、溶磷量、培养基pH变化与有机酸的产生。

    结果 

    从大豆根际土壤中分离获得4株溶磷菌株WJ1、WJ3、WJ5和WJ6。4个菌株分别属于假单胞菌属Pseudomonas sp.、肠杆菌属Enterobacter sp.、苍白杆菌属Ochrobacterum sp.和克雷伯菌属 Klebsiella sp.。4株溶磷菌96 h内最大溶磷量分别为558、478、596和586 μg·mL-1。甲基红试验和培养物pH测定结果表明:4个菌株在溶磷过程中可使培养物的pH下降,当pH小于4时,会明显阻碍菌株的生长。pH为5时,WJ1和WJ3的生长受到轻微的影响,WJ5和WJ6能正常生长。GC-MS对菌株在溶磷过程中产生的有机化合物的分析表明,4菌株均分泌多种有机酸,其中α-酮戊二酸在WJ1、WJ3和WJ6菌株溶磷过程中大量产生。

    结论 

    4菌株具有较好的溶磷能力,溶磷过程中分泌有机酸种类不完全相同,有机酸的分泌造成培养基的pH降低,影响菌体生长,而菌体数量决定各菌株的溶磷量。

    Abstract:
    Objective 

    In order to determine the species and characteristics of phosphate solubilizing bacteria (PSB) in soybean, Glycine max, rhizosphere soil in Jilin Province.

    Method 

    PSB were screened based on the formation of a halo zone of dissolving phosphate, and were identified by 16S rDNA gene sequencing and Vitek 2 system. Bacterial growth rates, soluble phosphorus concentrations, pH changes of the media and the types and amounts of secreted organic acids were determined.

    Result 

    WJ1, WJ3, WJ5 and WJ6 were isolated from soybean rhizosphere soil, and were identified as Pseudomonas sp., Enterobacter sp., Ochrobacterum sp. and Klebsiella sp. respectively. The maximum soluble phosphorus concentrations within 96 h of inoculating four PSB were 558, 478, 596 and 586 μg·mL-1 respectively. The methyl red tests and pH measurements indicated that media pH all decreased during the phosphate solubilizing process of four PSB. Bacterial growth was limited when pH was below 4. Growth of WJ1 and WJ3 were slightly affected at pH 5, whereas WJ5 and WJ6 grew normally. Various organic compounds secreted from four PSB were analyzed by GC-MS, and among them α-ketoglutaric acid was identified as an abundant compound secreted by WJ1, WJ3 and WJ6.

    Conclusion 

    All four PSB can effectively solubilize phosphate. The types of organic acids produced by the four PSB are not exactly the same, and the secretion of organic acids causes medium pH to decline, which inhibit the bacterial growth. The number of the bacteria determinines the amount of dissolved phosphorus.

  • 图  1   不同溶磷菌在接菌96 h内溶磷量与生长曲线的变化

    Figure  1.   The growth of different PSB and the amounts of P released by the PSB within 96 h of inoculation

    图  2   不同溶磷菌的培养基在接菌18 h内的甲基红显色结果

    Figure  2.   The methyl red tests of acidification levels of media within 18 h of inoculating different PSB

    图  3   不同溶磷菌在12 h内对改良NBRIP和LB培养基pH的影响

    Figure  3.   Changes in pH of modified NBRIP media and LB media within 12 h of incubating different PSB

    图  4   不同溶磷菌在不同初始pH LB培养基中的生长曲线

    Figure  4.   The growth curves of different PSB in LB media with different initial pH

    表  1   不同溶磷菌溶磷24 h培养物中的有机化合物相对含量1)

    Table  1   Relative contents of organic compounds secreted from different PSB during 24 h of culturation

    下载: 导出CSV
  • [1]

    VYAS P, ARVIND G. Organic acid production in vitro and plant growth promotion in maize under controlled envi-ronment by phosphate-solubilizing Pseudomonas fluores-cent[J]. BMC Microbiol, 2009, 9(1): 174-188. doi: 10.1186/1471-2180-9-174

    [2]

    YADAV B K, TARAFDAR J C. Ability of Emericella rugulosa to mobilize unavailable P compounds during Pearl millet[Pennisetum glaucum(L.) R. Br.] crop under arid condition[J]. Indian J Microbiol, 2007, 47(1): 57-63 doi: 10.1007/s12088-007-0011-0

    [3]

    CHUNG H K, PARK M S, MUNUSAMY M H Y. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J]. Soil Biol Biochem, 2005, 37(10): 1970-1974. doi: 10.1016/j.soilbio.2005.02.025

    [4] 孙振宁, 段兴武, 谢云.东北典型黑土供肥量与大豆肥料利用率[J].中国农学通报, 2012, 28(15): 46-51. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201215010
    [5]

    YANG P X, MA L, CHEN M H, et al. Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around Dianchi Lake drainage area of China[J]. Pedosphere, 2012, 22(5): 707-716. doi: 10.1016/S1002-0160(12)60056-3

    [6]

    RODRIGUEZ H, REYNALDO F. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnol Adv, 1999, 17(4/5): 319-339. doi: 10.1016-S0734-9750(99)00014-2/

    [7]

    KOBUS J. The distribution of microorganisms mobilizing phosphorus in different soils[J]. Acta Microbiol Pol, 1962, 11: 255- 264. http://europepmc.org/abstract/MED/14033984

    [8]

    LIU H, WU X Q, REN J H, et al. Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of China[J]. Pedosphere, 2011, 21(21): 90-97. http://cn.bing.com/academic/profile?id=4bb1606005962e14df260ee25e10550b&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    PARK K H, LEE C Y, SON H J. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities[J]. Lett Appl Microbiol, 2009, 49(49): 222-228.

    [10] 段兴武, 赵振, 刘刚.东北典型黑土区土壤理化性质的变化特征[J].土壤通报, 2012, 43(3): 529-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201728847
    [11] 薛庆喜.中国及东北三省30年大豆种植面积、总产、单产变化分析[J].中国农学通报, 2013, 29(35): 102-106. doi: 10.11924/j.issn.1000-6850.2012-4055
    [12]

    PARK J H, NANTHI B, MALLAVARAPU M, et al. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria(Enterobacter sp.)[J]. J Environ Manage, 2011, 92(4): 1115-1120. doi: 10.1016/j.jenvman.2010.11.031

    [13]

    NAUTIYALA C S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol, 1999, 170(1): 265-270. doi: 10.1111/fml.1999.170.issue-1

    [14]

    YANG M Y, LI W M, GUO X X, et al. Isolation and identification of a carbazole degradation gene cluster from Sphingomonas sp. JS1[J]. World J Microbiol Biotechnol, 2009, 25(9): 1625-1631. doi: 10.1007/s11274-009-0055-x

    [15] 谢文明, KO K Y, LEE K S.土壤和白菜中低分子量有机酸的气相色谱分析[J].岩矿测试, 2009, 28(2): 97-100. doi: 10.3969/j.issn.0254-5357.2009.02.002
    [16]

    LIN T F, HUANG H I, SHEN F T, et al. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74[J]. Bioresource Technol, 2006, 97(7): 957-960. doi: 10.1016/j.biortech.2005.02.017

    [17]

    HOBERG E, MARSCHNER P, LIEBEREI R. Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite[J]. Microbiol Res, 2005, 160(2): 177-187. doi: 10.1016/j.micres.2005.01.003

    [18]

    FUENTES B, JORQUERA M, MORA M L. Dynamics of phosphorus and phytateutilizing bacteria during aerobic degradation of dairy cattle dung[J]. Chemosphere, 2009, 74(2): 325-331. doi: 10.1016/j.chemosphere.2008.08.045

    [19]

    ANTOUN H. Beneficial microorganisms for the sustainable use of phosphates in agriculture[J]. Procedia Eng, 2012, 46(3): 62-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214321697

    [20]

    PATEL D K, MURAWALA P, ARCHANA G, et al. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads[J]. Bioresour Technol, 2011, 102(3): 3055-3061. doi: 10.1016/j.biortech.2010.10.041

    [21] 赵小蓉, 林启美.微生物解磷的研究进展[J].土壤肥料, 2001, 56(3): 7-11. http://d.old.wanfangdata.com.cn/Periodical/trfl200103002
    [22]

    PARK J H, NANTHI B, MALLAVARAPU M, et al. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil[J]. J Hazard Mater, 2011, 185(2/3): 829-836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0223879799

    [23]

    TOFAZZAL-ISLAMA M, DEORAA A, HASHIDOKOA Y, et al. Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh[J].Z Naturforsch C, 2007, 62(1/2): 103-110.

    [24]

    KHAN M S, ZAIDI A, WANI P A. Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review[J]. Agron Sustain Dév, 2007, 27(1): 29-43. doi: 10.1051/agro:2006011

    [25]

    ILLMER P, SCHINNER F. Solubilization of inorganic phosphates by microorganisms isolated from forest soil[J]. Soil Biol Biochem, 1992, 24(4): 389-395. doi: 10.1016/0038-0717(92)90199-8

    [26]

    ILLMER P, SCJOMMER F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biol Biochem, 1995, 27(3): 257-263. doi: 10.1016/0038-0717(94)00190-C

图(4)  /  表(1)
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  5
  • PDF下载量:  1596
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2016-09-09

目录

    /

    返回文章
    返回