• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

cry1Ab13基因玉米新种质的创制

陈沼汀, 董昭旭, 刘双, 孙国旭, 李晖, 魏晓禹, 孙苏, 关淑艳

陈沼汀, 董昭旭, 刘双, 孙国旭, 李晖, 魏晓禹, 孙苏, 关淑艳. 转cry1Ab13基因玉米新种质的创制[J]. 华南农业大学学报, 2016, 37(5): 31-37. DOI: 10.7671/j.issn.1001-411X.2016.05.006
引用本文: 陈沼汀, 董昭旭, 刘双, 孙国旭, 李晖, 魏晓禹, 孙苏, 关淑艳. 转cry1Ab13基因玉米新种质的创制[J]. 华南农业大学学报, 2016, 37(5): 31-37. DOI: 10.7671/j.issn.1001-411X.2016.05.006
CHEN Zhaoting, DONG Zhaoxu, LIU Shuang, SUN Guoxu, LI Hui, WEI Xiaoyu, SUN Su, GUAN Shuyan. Creation of new transgenic maize germplasm harboring cry1Ab13 gene[J]. Journal of South China Agricultural University, 2016, 37(5): 31-37. DOI: 10.7671/j.issn.1001-411X.2016.05.006
Citation: CHEN Zhaoting, DONG Zhaoxu, LIU Shuang, SUN Guoxu, LI Hui, WEI Xiaoyu, SUN Su, GUAN Shuyan. Creation of new transgenic maize germplasm harboring cry1Ab13 gene[J]. Journal of South China Agricultural University, 2016, 37(5): 31-37. DOI: 10.7671/j.issn.1001-411X.2016.05.006

cry1Ab13基因玉米新种质的创制

基金项目: 

吉林省省级粮食生产发展专项 2015001

吉林农业大学科研启动基金 201242

详细信息
    作者简介:

    陈沼汀(1990—),女,硕士研究生,E-mail:562770926@qq.com

    通讯作者:

    关淑艳(1971—),女,教授,博士,E-mail:458194095@qq.com

  • 中图分类号: S433.4

Creation of new transgenic maize germplasm harboring cry1Ab13 gene

  • 摘要:
    目的 

    构建包含抗鳞翅目害虫基因cry1Ab13的重组植物表达载体,并利用其创制对玉米螟Ostrinia furnacalis具有优良抗性的转基因玉米Zea may L.新种质。

    方法 

    利用同源重组法将cry1Ab13基因连接到表达载体pCAMBIA3300-Bar上,获得以抗除草剂 Bar 基因为筛选标记的植物表达载体pCAMBIA3300-cry1Ab13-Bar。通过农杆菌介导法转化玉米自交系H99幼胚,对再生植株进行逐代除草剂筛选、PCR检测及T2代植株的Southern blotting检测、实时荧光定量PCR检测,并对转基因植株进行田间及室内抗虫性鉴定。

    结果 

    构建了cry1Ab13基因的植物表达载体,转化玉米获得3株高抗玉米螟和1株抗玉米螟的T2代转基因植株。Southern blotting证明cry1Ab13基因已经整合到玉米基因组中,实时荧光定量PCR结果表明cry1Ab13基因已经在玉米植株内表达。抗虫性鉴定结果表明,与对照相比转基因植株对玉米螟的抗性显著提高。

    结论 

    cry1Ab13基因导入玉米并成功表达,显著提高了转基因玉米对玉米螟的抗性,为抗虫玉米新种质的创制奠定了基础。

    Abstract:
    Objective 

    To construct a plant expression vector including a lepidopteran-resistant gene cry1Ab13 and use it to create a new transgenic maize germplasm with high resistance to Ostrinia furnacalis.

    Method 

    The cry1Ab13 gene was inserted into expression plasmid pCAMBIA3300-Bar by homologous recombination method, and the plant expression vector pCAMBIA3300-cry1Ab13-Bar with Bar gene as a selection marker was obtained. Following Agrobacterium mediated transformation of the immature embryo of maize inbred line H99, the regenerated plants were detected by PCR and herbicide-resistance selection for each generation. T2 generation plants were also detected by Southern blotting and real-time quantitative PCR. The resistance of transgenic plants to O. furnacalis was tested indoor and in the fields.

    Result 

    A plant expression vector containing the cry1Ab13 gene was successfully constructed and three T2 transgenic maize with high resistance and one T2 transgenic maize with resistance to O. furnacalis were obtained. The cry1Ab13 gene was integrated into maize genome as confirmed by Southern blotting, and it was expressed in maize as shown by real-time quantitative PCR.The resistance of transgenic plants to O. furnacalis was improved significantly compared to non-transgenic control.

    Conclusion 

    We introduced the cry1Ab13 gene into maize and its expression significantly improved the resistance of maize to O. furnacalis, which will promote the development of new insect-resistant maize germplasm.

  • 图  1   重组植物表达载体T-DNA区结构图

    Figure  1.   T-DNA region of plant recombinant expression vector

    图  2   重组植物表达载体pCAMBIA3300-cry1Ab13-Bar的PCR(A)与酶切验证(B)

    M:DNA marker DL 2000;P:阳性对照;N:阴性对照;1~6:重组质粒。

    Figure  2.   Verification of the recombinant vector pCAMBIA3300-cry1Ab13-Bar using PCR(A) and digestion(B)

    图  3   部分T1代转基因玉米PCR检测结果

    M:DNA marker DL 2000;P:阳性对照;N:阴性对照;CK:非转基因植株;1~5:转基因植株; A、B、C分别为对cry1Ab13基因、CaMV35S启动子及Bar基因的扩增结果。

    Figure  3.   PCR detection of some T1 generation transgenic maize

    图  4   部分T2代转基因玉米PCR检测结果

    M:DNA marker DL 2000;P:阳性对照;N:阴性对照;CK:非转基因植株;1~5:转基因植株; A、B、C分别为对cry1Ab13基因、CaMV35S启动子及Bar基因的扩增结果。

    Figure  4.   PCR detection of some T2 generation transgenic maize

    图  5   T2代转基因玉米cry1Ab13基因的Southern杂交检测

    M:λHind Ⅲ DNA marker;P:阳性对照;CK:非转基因植株;1~5分别为转基因植株T2-1-1-2、T2-2-3-1、T2-3-1-2、T2-4-2-1和T2-5-1-3。

    Figure  5.   Southern blotting detection of cry1Ab13gene in T2 transgenic maize

    图  6   转基因玉米中cry1Ab13基因相对表达量

    基因相对表达量用2-ΔCT表示, 其中ΔCT=Ct cry1Ab13 -Ct Actin;CK:非转基因植株;图中所示数据为x±SE,n=9。

    Figure  6.   Relative expression of cry1Ab13gene in transgenic maize

    图  7   转基因玉米植株田间抗虫性鉴定

    A:转基因植株;B:非转基因植株。

    Figure  7.   Evaluation of resistance of transgenic maize plants to Ostrinia furnacalis in the field

    图  8   饲喂转基因玉米籽粒及苞叶对玉米螟死亡率的影响

    图中数据为x±SE,n=3;*和**分别代表相同处理时间的转基因植株与非转基因植株(CK)的玉米螟死亡率达到0.05和0.01的显著差异水平(t检验)。

    Figure  8.   Effects of feeding transgenic corn kernels or bracts of ears on the mortality rate of Ostrinia furnacalis

    表  1   引物信息1)

    Table  1   Primer information

    下载: 导出CSV

    表  2   PCR检测阳性玉米植株

    Table  2   PCR-positive maize plants

    下载: 导出CSV

    表  3   室内转基因玉米株系苗期对玉米螟的抗性级别

    Table  3   The resistant levels of transgenic maize lines to Ostrinia furnacalis at seeding stage indoor

    下载: 导出CSV
  • [1] 李少昆, 王崇桃.玉米高产潜力途径[M].北京:科学出版社, 2010.
    [2] 赵久然, 王荣焕.中国玉米生产发展历程、存在问题及对策[J].中国农业科技导报, 2013, 15(3):1-6. doi: 10.3969/j.issn.1008-0864.2013.03.01
    [3]

    NICOLAS J A, TAMAYO N V, CAOILI B L, et al. Improving the yield of glutinous white corn by distance of planting and use of biocontrol agents for management of Asian corn borer, Ostrinia furnacalis Guenee[C]//Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. Proceedings of 3rd Asian Conference on Plant Growth-Promoting Rhizobacteria (PGPR) and other Microbials, Manila, Philippines, 21-24 April, 2013. Manila, Philippines: Asian PGPR Society for Sustainable Agriculture, 2013: 50-74.

    [4]

    HE K, WANG Z, ZHOU D, et al. Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae)[J]. J Econ Entomol, 2003, 96(3): 935-940. doi: 10.1093/jee/96.3.935

    [5] 王月琴, 何康来, 江帆, 等. BT799玉米对亚洲玉米螟抗性研究[J].应用昆虫学报, 2014, 51(3):636-642. http://d.old.wanfangdata.com.cn/Periodical/kczs201403006
    [6]

    FROMM M E, MORRISH F, ARMSTRONG C, et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants[J].Nat Biotechnol, 1990, 8(9): 833-839. doi: 10.1038/nbt0990-833

    [7]

    GORDON-KAMM W J, SPENCER T M, MANGANO M L, et al. Transformation of maize cells and regeneration of fertile transgenic plants[J].Plant Cell, 1990, 2(7): 603-618. doi: 10.1105/tpc.2.7.603

    [8] 郝曜山, 孙毅, 杜建中, 等.转双价抗虫基因BmkIT-Chitinase玉米株系的获得[J].分子植物育种, 2012, 10(2): 147-154. doi: 10.3969/mpb.010.000147
    [9] 李桂玲, 李明泽, 刘宗华, 等.转Bt基因抗虫玉米的研究[J].生物技术通报, 2009(5): 9-13. http://d.old.wanfangdata.com.cn/Periodical/kcxb200604004
    [10]

    SHIMADA N, MURATA H, MIKAMI O, et al. Effects of feeding calves genetically modified corn Bt11: A clinico-biochemical study[J]. J Vet Med Sci, 2006, 68(10): 1113-1115. doi: 10.1292/jvms.68.1113

    [11]

    TRABALZA-MARINUCCI M, BRANDI G, RONDINI C, et al. A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep[J]. Livest Sci, 2008, 113(2): 178-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ021470885

    [12]

    BUZOIANU S G, WALSH M C, REA M C, et al. Effect of feeding genetically modified Bt MON810 maize to 40-day-old pigs for 110 days on growth and health indicators[J]. Animal, 2012, 6(10): 1609-1619. doi: 10.1017/S1751731112000249

    [13] 檀建新, 张杰, 宋福平, 等.苏云金芽孢杆菌cry1Ab13 基因的克隆及表达研究[J].微生物学报, 2002, 42(1):40-44. doi: 10.3321/j.issn:0001-6209.2002.01.006
    [14] 关淑艳, 赵丽娜, 刘慧婧, 等.农杆菌介导的sbe2a基因RNAi载体对玉米遗传转化的研究[J].作物杂志, 2011(2):36-40. doi: 10.3969/j.issn.1001-7283.2011.02.010
    [15] 郭新梅, 张晓东, 韩立新, 等.不同基因型玉米幼胚愈伤组织的培养特性[J].西北农林科技大学学报(自然科学版), 2007, 35(4): 68-72. doi: 10.3321/j.issn:1671-9387.2007.04.016
    [16] 刘强, 张丽媛, 马红丹, 等.转phyA基因玉米新种质的创制[J].华南农业大学学报, 2014, 35(1):43-48. http://xuebao.scau.edu.cn/zr/hnny_zr/ch/reader/view_abstract.aspx?flag=1&file_no=201401008&journal_id=hnny_zr
    [17] 刘强. phyA基因植物表达载体的构建及转化玉米的研究[D]. 长春: 吉林农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10193-1013310346.htm
    [18] 何康来, 王振营, 周大荣, 等.玉米抗螟性鉴定方法与评价标准[J].沈阳农业大学学报, 2000, 31(5):439-443. doi: 10.3969/j.issn.1000-1700.2000.05.009
    [19]

    ARMSTRONG C L, PARKER G B, PERSHING J C, et al. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis[J]. Crop Sci, 1995, 35(2): 550-557. doi: 10.2135/cropsci1995.0011183X003500020045x

    [20] 王忠华, 吴刚. Bt水稻中 cry1Ab 基因的遗传分析[J].遗传学报, 2001, 28(9): 846-851. http://d.old.wanfangdata.com.cn/Periodical/ycxb200109009
    [21] 刘悦萍, 赵晓萌, 宫飞.转基因植物中外源基因沉默机制的研究进展[J].中国农学通报, 2005, 21(4): 80-83. doi: 10.3969/j.issn.1000-6850.2005.04.024
    [22] 岳同卿, 郎志宏, 王延锋, 等.转 Bt cry1Ah 基因抗虫玉米的获得及其遗传稳定性分析[J].农业生物技术学报, 2010, 18(4): 638-644. doi: 10.3969/j.issn.1674-7968.2010.04.003
    [23]

    DAY C D, LEE E, KOBAYASHI J, et al. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced[J]. Genes Dev, 2000, 14(22): 2869-2880. doi: 10.1101/gad.849600

    [24] 王培, 何康来, 王振营, 等.转 cry1Ac 玉米对亚洲玉米螟的抗性评价[J].植物保护学报, 2012, 39(5): 395-400. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201205003
    [25] 王冬妍, 王振营, 何康来, 等. Bt玉米杀虫蛋白含量的时空表达及对亚洲玉米螟的杀虫效果[J].中国农业科学, 2004, 37(8): 1155-1159. doi: 10.3321/j.issn:0578-1752.2004.08.012
    [26] 张永军, 吴孔明, 郭予元.转Bt基因棉花杀虫蛋白含量的时空表达及对棉铃虫的毒杀效果[J].植物保护学报, 2001, 28(1): 1-6. doi: 10.3321/j.issn:0577-7518.2001.01.001
图(8)  /  表(3)
计量
  • 文章访问数:  1371
  • HTML全文浏览量:  18
  • PDF下载量:  2002
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-14
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2016-09-09

目录

    /

    返回文章
    返回