Design and experiment of an intelligent mobile platform loaded with a fruit picking robot
-
摘要:目的
基于三自由度水果采摘机械臂,设计一种轮式智能移动平台。
方法根据农田工作环境,设计了转向机构和防撞梁机构;借助ANSYS对车架在3种工况下的变形情况进行仿真分析;使用Simulink模块对车载电机进行了基于最大转矩电流比矢量控制(MPTA)以及ID=0模式下的仿真;使用VC++语言编写了运动控制程序,开发人机交互界面;在南京市江浦农场进行样机行走试验。
结果弯扭工况下车架变形量最大为14.1 mm,应力值小于材料屈服极限;基于MPTA控制下的电机约0.8 ms达到稳定;该平台最大爬坡角度约为10°,1.5 m·s-1行进时跟踪路径的横向偏差约为0.22 m。
结论该移动平台结构合理,强度和刚度较高,运动精度高,符合实际工作要求。
Abstract:ObjectiveTo design a prototype of wheeled intelligent mobile platform at the basis of a 3-DOF fruit picking robot hand.
MethodAccording to the working environment of farmland, the steering structure and anti-collision beam structure of the platform were designed. The deformation of the platform frame under three working conditions were simulated using ANSYS, and simulation of the motor was carried out using Simulink module based on MPTA or ID=0. The motion control program and human computer interface were programmed with VC++. The prototype walking experiments were carried out in Jiangpu farm, Nanjing.
ResultThe maximum deformation of the platform frame was 14.1 mm under the crankle working condition, and the value of stress was under the yield limit of material. The motor based on MPTA control achieved stability after 0.8 ms. The maximum climbing angle of the platform was 10°, and the tracking path lateral deviation was 0.22 m at a speed of 1.5 meter per second.
ConclusionThis mobile platform has reasonable structure, with high strength, rigidity and motion accuracy, which meets the requirements of practical use.
-
-
-
[1] 郑燕, 张吉国, 史建民.我国水果加工业发展现状、问题及对策[J].山东农业科学, 2014, 46(4): 121-124. doi: 10.3969/j.issn.1001-4942.2014.04.033 [2] 顾宝兴, 姬长英, 王海青, 等.智能移动水果采摘机器人设计与试验[J].农业机械学报, 2012, 43(6): 153-160. doi: 10.6041/j.issn.1000-1298.2012.06.028 [3] ZHAO D A, LV J D, JI W. Design and control of an apple harvesting robot[J]. Biosyst Eng, 2011, 110(2):112-122. doi: 10.1016/j.biosystemseng.2011.07.005
[4] 胡彦福. 基于超声波传感器的轮式喷药机器人移动控制系统研究[D]. 重庆: 西南大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10635-2009104078.htm [5] 陈飞, 蔡建荣.柑橘收获机器人技术研究进展[J].农机化研究, 2008, 68(7):232-235. doi: 10.3969/j.issn.1003-188X.2008.07.073 [6] 陈淑艳, 陈文家.履带式移动机器人研究综述[J].机器人技术, 2007, 24(12):232-235. http://d.old.wanfangdata.com.cn/Periodical/jdgc200712034 [7] BAETEN J, DONNE K, BOEDRIJ S, et al. Autonomous fruit picking machine: A robotic apple havester[M] //SICILIANO B, KHATIB O, GROEN F. Springer tracts in advanced robotics: Field and service robotics, Berlin: Springer-Verlag, 2008: 531-539.
[8] 闫树兵, 姬长英.农业机器人移动平台的研究现状与发展趋势[J].拖拉机与农用运输车, 2007, 34(5): 13-15. doi: 10.3969/j.issn.1006-0006.2007.05.006 [9] 陆怀民.林木果球采摘机器人设计与试验[J].农业机械学报, 2001, 32(6): 52-58. doi: 10.3969/j.issn.1000-1298.2001.06.015 [10] 焦俊, 孔文, 辜丽川, 等.基于UKF和SMO农用履带机器人滑动参数计算[J].系统仿真学报, 2015, 27(7): 1577-1583. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201507024 [11] 张杰, 姬长英, 顾宝兴, 等.三自由度苹果采摘机器人本体设计[J].计算机工程与应用, 2015, 51(23):251-257. doi: 10.3778/j.issn.1002-8331.1502-0019 [12] 张飞. 欠驱动机械手末端执行器的设计与研究[D]. 杭州: 浙江理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10338-1014226467.htm [13] 刘海江, 张夏, 肖丽芳.基于LS-DYNA的7075铝合金汽车保险杠碰撞仿真分析[J].机械设计, 2011, 28(2): 19-22. doi: 10.3969/j.issn.1672-1616.2011.02.004 [14] 赵宇楠, 司景萍, 王二毛, 等.基于ANSYS的矿用自卸车车架结构优化设计[J].煤矿机械, 2014, 35(3): 18-21. http://d.old.wanfangdata.com.cn/Periodical/mkjx201403009 [15] 康元春, 刘瑛.货车车架尺寸优化设计[J].湖北汽车工业学院学报, 2012, 26(3): 10-12. doi: 10.3969/j.issn.1008-5483.2012.03.003 [16] 史光辉, 于佳, 张亮.永磁同步电动机最大转矩电流比控制[J].电机技术, 2009, 31(5): 28-31. doi: 10.3969/j.issn.1006-2807.2009.05.009 [17] 佟为明, 金显吉, 林景波.基于C8051F023微控制器的CAN总线实验系统设计与实现[J].低压电器, 2007, 37(23): 37-40. doi: 10.3969/j.issn.1001-5531.2007.23.010 [18] 姜雨彤, 杨进华, 刘钊, 等.双目CCD测距系统的高精度标定[J].计算机工程, 2013, 39(7): 228-232. doi: 10.3969/j.issn.1000-3428.2013.07.051 [19] 田光兆, 安秋, 姬长英, 等.基于立体视觉的智能农业车辆实时运动检测[J].农业机械学报, 2013, 44(7): 210-215. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201307037 [20] 王友权, 周俊, 姬长英, 等.基于自主导航和全方位转向的农用机器人设计[J].农业工程学报, 2008, 24(7):110-113. doi: 10.3321/j.issn:1002-6819.2008.07.022