Prediction the potential suitable areas of Tithonia diversifolia A. Gray and Synedrella nodiflora (L.) Gaertn. in China based on the optimized MaxEnt model
-
摘要:目的
研究外来入侵杂草肿柄菊Tithonia diversifolia A. Gray和金腰箭Synedrella nodiflora L. Gaertn.在中国的当前适生区和潜在适生区,以及影响肿柄菊和金腰箭分布的主要环境变量,为这2种杂草的入侵监测和掌握其扩散分布规律提供理论参考。
方法对物种分布数据进行拟合分析,对环境变量进行相关性分析,使用ENMeval对物种分布数据进行模型优化,将得到的分布数据、环境变量、正则化参数 (Regularization multiplier, RM)和特征组合参数 (Feature combination multiplier, FC)导入MaxEnt进行分布预测,然后用ArcGIS得到当前及潜在分布适生区。
结果温度季节变化标准差、最冷季度平均温度是影响肿柄菊分布的主要环境变量,贡献率之和为70.8%;年均温度变化范围、年均降水量、最湿月降水量是影响金腰箭分布的主要环境变量,贡献率之和达76.7%。这2种植物的中高适生区位于我国西藏南部、云南、广西、广东、福建、海南、台湾。
结论已成功入侵中国的肿柄菊和金腰箭目前主要分布在中国南部热带、亚热带一些区域,预测有向内陆逐步扩张的趋势,对此要加强防范。
Abstract:ObjectiveThis paper aims to study the current and the potential suitable areas of the invasive alien weeds Tithonia diversifolia A. Gray and Synedrella nodiflora (L.) Gaertn. in China, and to explore the main environmental variables affecting the distribution of these two plants. It provides a theoretical reference for the invasion monitoring of these two invasive weeds and for mastering their diffusion and distribution patterns.
MethodFit analysis on the species distribution data and correlation analysis on the environmental variables were employed, and ENMeval was used to optimize the model of the species distribution data. The obtained distribution data, environmental variables, regularization multiplier (RM) and feature combination (FC) parameters were imported into MaxEnt for distribution prediction. Then, ArcGIS was used to obtain the current and potential suitable distribution areas.
ResultThe standard deviation of seasonal temperature change and the average temperature in the coldest quarter were the main environmental variables affecting the distribution of T. diversifolia, and the sum of their contribution rates reached 70.8%. The range of annual average temperature change, annual average precipitation and precipitation in the wettest month were the main environmental variables affecting the distribution of S. nodiflora, with the sum of their contribution rates reaching 76.7%. The moderate and high suitable areas of these two plants were distributed in southern Tibet, Yunnan, Guangxi, Guangdong, Fujian, Hainan and Taiwan of China.
ConclusionBoth T. diversifolia and S. nodiflora. have successfully invaded China, and are currently mainly distributed in some tropical and subtropical areas in southern China. It is predicted that they have a trend of gradually expanding towards the inland. Therefore, stronger precautions should be taken against their invasion.
-
-
表 1 环境变量因子
Table 1 Environmental variable factors
变量 Variable 描述 Description 变量 Variable 描述 Description bio01 年平均温度 elev 高程海拔 bio02 昼夜温差月均值 slope 坡度 bio03 等温性 aspect 坡向 bio04 温度季节变化标准差 awc_class 土壤有效含水量 bio05 最暖月最高温 t_bs 表层土壤容重 bio06 最冷月最低温 t_CaCO3 表层碳酸钙含量 bio07 年均温度变化范围 t_CaSO4 表层硫酸钙含量 bio08 最湿季度平均温度 t_cec_soil 表层土壤阳离子交换能力 bio09 最干季度平均温度 t_clay 表层黏土含量 bio10 最暖季度平均温度 t_ece 表层盐分含量 bio11 最冷季度平均温度 t_esp 表层碱分含量 bio12 年均降水量 t_gravel 表层土壤砾石含量 bio13 最湿月降水量 t_oc 表层有机碳含量 bio14 最干月降水量 t_pH_H2O 表层酸碱度 bio15 季节降水量变异系数 t_sand 表层底层沙含量 bio16 最湿季度降水量 t_silt 表层粉沙粒含量 bio17 最干季度降水量 t_teb 表层交换性盐基 bio18 最暖季度降水量 t_usda_tex_class 表层Usda土壤质地分类 bio19 最冷季度降水量 表 2 不同时期气候情景下肿柄菊和金腰箭在中国的潜在适生区面积
Table 2 Potential suitable areas of Tithonia diversifolia A. Gray and Synedrella nodiflora (L.) Gaertn in China under different climate scenarios in different periods
×104 km2 物种
Species时期
Tperiod气候情景
Climate scenario低适生区
Low suitable areas中适生区
Middle suitable areas高适生区
High suitable areas总适生区
Total suitable area肿柄菊
Tithonia diversifolia
A. Gray当前
Current period- 78.43 42.46 31.83 152.72 2040s SSP1-2.6 145.34 51.93 38.62 235.89 2040s SSP2-4.5 147.99 52.50 35.91 236.40 2040s SSP3-7.0 142.08 51.60 36.98 230.67 2040s SSP5-8.5 142.18 50.33 37.23 229.74 金腰箭
Synedrella nodiflora
L. Gaertn.当前
Current period- 160.37 56.49 33.82 250.68 2040s SSP1-2.6 146.40 123.85 93.78 364.03 2040s SSP2-4.5 73.23 35.04 19.84 128.11 2040s SSP3-7.0 145.16 54.02 54.99 254.17 2040s SSP5-8.5 178.97 39.65 26.29 244.92 -
[1] ADKINS S, SHABBIR A. Biology, ecology and management of the invasive Parthenium weed (Parthenium hysterophorus L. )[J]. Pest Management Science, 2014, 70(7): 1023-1029. doi: 10.1002/ps.3708
[2] KARIMMOJENI H, RAHIMIAN H, ALIZADEH H, et al. Competitive ability effects of Datura stramonium L. and Xanthium strumarium L. on the development of maize (Zea mays) seeds[J]. Plants, 2021, 10(9): 1922. doi: 10.3390/plants10091922.
[3] THURKOW F, LORENZ C G, PAUSE M, et al. Advanced detection of invasive neophytes in agricultural landscapes: A multisensory and multiscale remote sensing approach[J]. Remote Sensing, 2024, 16(3): 500. doi: 10.3390/rs16030500
[4] 王桔红, 陈文, 彭玉姣, 等. 不同入侵程度两种菊科植物化学计量特征及其影响因素[J]. 广西植物, 2024, 44(8): 1469-1480. doi: 10.11931/guihaia.gxzw202304073 [5] HAO Q, MA J S. Invasive alien plants in China: An update[J]. Plant Diversity, 2023, 45(1): 117-121. doi: 10.1016/j.pld.2022.11.004
[6] WANG F, HUANG J, ZHANG N, et al. Exploring plant characteristics for constructing a pre-border weed risk assessment for China[J]. Biological Invasions, 2024, 26(4): 909-933. doi: 10.1007/s10530-023-03215-z
[7] 王四海, 孙卫邦, 成晓. 逃逸外来植物肿柄菊在云南的生长繁殖特性、地理分布现状及群落特征[J]. 生态学报, 2004, 24(3): 444-449. doi: 10.3321/j.issn:1000-0933.2004.03.008 [8] 赵金丽, 马友鑫, 朱华, 等. 云南省南部山地7种主要入侵植物沿公路两侧的扩散格局[J]. 生物多样性, 2008, 16(4): 369-380. doi: 10.3321/j.issn:1005-0094.2008.04.008 [9] 焦杨, 程希平, 王四海. 外来入侵植物肿柄菊的异速生长特征[J]. 西部林业科学, 2020, 49(1): 156-161. [10] NICHOLAS HIND D J. The typification of Verbesina nodiflora L. : The generitype of Synedrella Gaertn. (Compositae: Heliantheae: Ecliptinae)[J]. Kew Bulletin, 2016, 71(2): 1-5.
[11] LUO L D, ZHANG P, OU X K, et al. Development of EST-SSR markers for the invasive plant Tithonia diversifolia (Asteraceae)[J]. Applications in Plant Sciences, 2016, 4(7): 1600011. doi: 10.3732/apps.1600011.
[12] ZHAO X F, LEI M, WEI C H, et al. Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile) in China using MaxEnt model[J]. Science of the Total Environment, 2022, 852(3): 158202. doi: 10.1016/j.scitotenv.2022.158202.
[13] ZHAO Z Y, XIAO N W, SHEN M, et al. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China[J]. Science of The Total Environment, 2022, 842(10): 156867. doi: 10.1016/j.scitotenv.2022.156867.
[14] 张惠惠, 张国帅, 张智, 等. 最大熵模型在植物生态评估领域的应用[J]. 安徽农业科学, 2024, 52(22): 248-257. doi: 10.3969/j.issn.0517-6611.2024.22.049 [15] 邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3): 295-302. [16] 贺一鸣, 王驰, 王海涛, 等. 气候变化对蒙古莸潜在适生区的影响[J]. 草地学报, 2023, 31(2): 540-550. [17] 袁俊杰, 龙阳, 李凯兵, 等. 多斑矢车菊在我国的适生性分析及入侵风险评估[J]. 中国植保导刊, 2024, 44(11): 91-96. doi: 10.3969/j.issn.1672-6820.2024.11.019 [18] 陈剑, 王四海, 杨卫, 等. 外来入侵植物肿柄菊群落动态变化特征[J]. 生态学杂志, 2020, 39(2): 469-477. [19] SUN Y M, FERNIE A R. Plant secondary metabolism in a fluctuating world: Climate change perspectives[J]. Trends in Plant Science, 2024, 29(5): 560-571. doi: 10.1016/j.tplants.2023.11.008
[20] WEI L J, WANG G H, XIE C P, et al. Predicting suitable habitat for the endangered tree Ormosia microphylla in China[J]. Scientific Reports, 2024, 14(1): 10330. doi: 10.1038/s41598-024-61200-5.
[21] 王鹏, 田姗姗, 宋盈盈, 等. 基于MaxEnt预测3种柃属植物在中国的潜在适生区[J]. 西南大学学报(自然科学版), 2024, 46(12): 84-99. [22] ESGUERRA D, MUNCH S B. Accounting for observation noise in equation‐free forecasting: The hidden-Markov S-map[J]. Methods in Ecology and Evolution, 2024, 15(8): 1347-1359. doi: 10.1111/2041-210X.14337
[23] 吴甜, 申科, 贾涛, 等. 外来植物肿柄菊对入侵生境的生态影响及其防控对策[J]. 生物安全学报(中英文), 2024, 33(1): 7-11. [24] 中国科学院中国植物志编辑委员会. 中国植物志: 第75卷[M]. 北京: 科学出版社, 2016: 65-70.