• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

木薯种茎精密播种过程中机械碰撞损伤有限元分析

陈林涛, 蓝莹, 窦文淼, 刘兆祥, 马旭, 陈睿

陈林涛, 蓝莹, 窦文淼, 等. 木薯种茎精密播种过程中机械碰撞损伤有限元分析[J]. 华南农业大学学报, 2024, 45(3): 427-436. DOI: 10.7671/j.issn.1001-411X.202308022
引用本文: 陈林涛, 蓝莹, 窦文淼, 等. 木薯种茎精密播种过程中机械碰撞损伤有限元分析[J]. 华南农业大学学报, 2024, 45(3): 427-436. DOI: 10.7671/j.issn.1001-411X.202308022
CHEN Lintao, LAN Ying, DOU Wenmiao, et al. Finite element analysis of mechanical collision damage during precision seeding of cassava seed stems[J]. Journal of South China Agricultural University, 2024, 45(3): 427-436. DOI: 10.7671/j.issn.1001-411X.202308022
Citation: CHEN Lintao, LAN Ying, DOU Wenmiao, et al. Finite element analysis of mechanical collision damage during precision seeding of cassava seed stems[J]. Journal of South China Agricultural University, 2024, 45(3): 427-436. DOI: 10.7671/j.issn.1001-411X.202308022

木薯种茎精密播种过程中机械碰撞损伤有限元分析

基金项目: 桂林市重大专项计划(20220102-3);桂林市重点研发计划(20210208-2);广西重点研发计划(2021AB38023);桂林市创新平台和人才计划项目(20210217-7);广西自然科学基金(2018GXNSFAA050026)
详细信息
    作者简介:

    陈林涛,讲师,博士,主要从事智能农机装备研究,Email:clt13424050147@163.com

    通讯作者:

    窦文淼,工程师,硕士,主要从事智能农机装备研究,Email:2274906643@qq.com

  • 中图分类号: S223.2;S566.9

Finite element analysis of mechanical collision damage during precision seeding of cassava seed stems

  • 摘要:
    目的 

    明确木薯种茎在播种过程中的碰撞损伤机制,寻求较小损伤的播种方式。

    方法 

    利用三维扫描技术逆向建立木薯种茎的三维模型,通过基于Hyper Mesh和LS-DYNA的种茎碰撞有限元分析,研究播种性能的主要影响因素(跌落高度、振动板安装倾斜角度及振动板振动频率)下种茎碰撞损伤过程,明确不同试验因素水平下种茎种芽−播种部件斜面接触等效应力、种芽−茎秆交接处等效应力、种芽−茎秆交接处应变及种芽−播种部件斜面接触应变变化规律;在单因素试验基础上,通过二次旋转正交组合试验研究,结合非线性多目标优化计算方法,对影响因素进行优化,以验证所建立回归模型的合理性。

    结果 

    当跌落高度为167.83 mm、振动板安装倾斜角度为22.18°、振动频率为66.96 Hz时,种芽−播种部件斜面接触等效应力为32.64 MPa、种芽−茎秆交接处等效应力为17.08 MPa、种芽−茎秆交接处应变为0.094、种芽−播种部件斜面接触应变为1.049,模型预测结果与实际仿真结果相近,证明了回归模型的可靠性。

    结论 

    本研究结果为揭示木薯种茎碰撞机制及播种装置优化等提供了理论依据。

    Abstract:
    Objective 

    To clarify the collision damage mechanism of cassava seed stems during the seeding process and seek a seeding method with less damage.

    Method 

    Using 3D scanning technology to reversely establish a 3D model of cassava seed stem, and through finite element analysis of seed stem collision based on Hyper Mesh and LS-DYNA, the main influencing factors of seeding performance (drop height, installation inclination angle of vibration plate, and vibration frequency of vibration plate) were studied to investigate the process of seed stem collision damage. The variation law of the equivalent stress of the contact between the seed stem bud and the sowing component slope, the equivalent stress at the junction of seed bud and stalk, the strain at the junction of seed bud and stalk, and the strain of seed bud and sowing components slope contact at different experimental factor levels were clarified. On the basis of single factor experiments, a quadratic rotation orthogonal combination experiment was conducted to study the influencing factors, combined with nonlinear multi-objective optimization calculation methods, in order to verify the rationality of the established regression model.

    Result 

    When the drop height was 167.83 mm, the installation inclination angle of the vibration plate was 22.18°, and the vibration frequency was 66.96 Hz, the equivalent stress of the oblique contact between the seed bud and the sowing component was 32.64 MPa, the equivalent stress of the intersection between the seed bud and the stalk was 17.08 MPa, the strain of the intersection between the seed bud and the stalk was 0.094, and the oblique contact strain of the seed bud and the sowing component was 1.049. The predicted results of the model were similar to the actual simulation results, proving the reliability of the regression model.

    Conclusion 

    The results provide a theoretical basis for revealing the collision mechanism of cassava seed stems and optimizing the seeding device.

  • 图  1   木薯种茎结构图

    1:种芽,2:韧皮层,3:表皮,4:木质层,5:髓体

    Figure  1.   Structure diagram of cassava seed stem

    1: Bud, 2: Bast, 3: Epidermis, 4: Xylem, 5: Medulla

    图  2   木薯种茎三维实体模型逆向建模过程

    Figure  2.   Reverse modeling process of cassava seed stem 3D solid model

    图  3   种茎主茎秆(A)和种芽(B)几何结构参数

    Figure  3.   Parameters of the geometrical structure of the main culm (A) and the bud (B) of the seed stem

    图  4   木薯种茎实物凸起种芽分布(A)及其建模(B)

    Figure  4.   Distribution of raised buds in physical cassava seed stem (A) and modeling (B)

    图  5   木薯种茎网格划分过程

    Figure  5.   Process of meshing cassava seed stems

    图  6   物体接触面定义

    A和B为两物体,$ {V_{\text{A}}} $和$ {V_{\text{B}}} $为构形,$ {\varOmega _{\text{A}}} $和$ {\varOmega _{\text{B}}} $为边界面,$ {\varOmega _{\text{C}}} $为接触面

    Figure  6.   Definition of object contact surface

    A and B are two objects, with conformations of $ {V_{\text{A}}} $ and $ {V_{\text{B}}} $, boundary surfaces of $ {\varOmega _{\text{A}}} $ and $ {\varOmega _{\text{B}}} $, contact surface of $ {\varOmega _{\text{C}}} $

    图  7   试验指标示意图

    Figure  7.   Schematic diagram of test indexes

    图  8   预切种振动供种式木薯播种器示意图

    1:喂种箱,2:种量控制提升板,3:阶梯式振动散种机构,4:振动散种板,5:振动系统,6:阶梯式调姿板,7:充种箱,8:充种板,9:输送链,10:捞种勺,11:护种部件,12:刮种部件,13:机架,14:木薯种茎群,15:电动机,16:种层挡板

    Figure  8.   Diagram of the whole machine structure of the pre-cut seed vibrating cassava seeder

    1: Seed feeding box, 2: Seed volume control lifting plate, 3: Stepped vibration seed dispersal mechanism, 4: Vibration seed dispersal plate, 5: Vibration system, 6: Stepped posturing plate, 7: Seed charging box, 8: Seed charging plate, 9: Conveyor chain, 10: Seed scooping spoon, 11: Seed guarding part, 12: Seed scraping part, 13: Rack, 14: Cassava seed stem cluster, 15: Electric motor, 16: Seed layer baffle plate

    图  9   种茎撞击全过程应力变化分析

    Figure  9.   Analysis of stress changes during the whole process of seed stem impaction

    图  10   木薯茎秆与振动板接触冲击的过程中种芽处的应力云图

    Figure  10.   Stress cloud at seed sprouts during impact of cassava stalks in contact with vibration plate

    图  11   木薯茎秆与振动板接触冲击过程中整体单元结果位移云图

    Figure  11.   Overall unit resultant displacement cloud during impact of cassava stalks in contact with vibration plate

    图  12   木薯种茎变形结果

    Figure  12.   Results of cassava seed stem deformation

    图  13   各因素对种茎种芽−播种部件斜面接触的等效应力的影响

    Figure  13.   Effects of various factors on the equivalent stress of the contact between the seed stem bud and sowing part on the slope

    图  14   各因素对种芽−茎秆交接处的等效应力的影响

    Figure  14.   Effects of various factors on the equivalent stress at the junction of seed bud and stalk

    表  1   木薯种茎各部位材料参数

    Table  1   Material parameters of cassava seed stem

    部位
    Part
    密度($ \rho $)/
    (×10−10 t·mm−3)
    Density
    径向弹性
    模量($ {E_a} $)/MPa
    Radial elasticity
    modulus
    轴向弹性
    模量($ {E_c} $)/MPa
    Axial elasticity
    modulus
    同性平面
    泊松比($ {\mu _{ab}} $)
    Homogeneous plane
    Poisson’s ratio
    异性平面
    泊松比($ {\mu _{ac}} $)
    Anisotropic plane
    Poisson’s ratio
    轴向剪切模
    量($ {G_{ab}} $)/MPa
    Axial shear
    modulus
    径向剪切模量
    ($ {G_{bc}} $)/MPa
    Radial shear
    modulus
    木质部
    Xylem
    8.350.0125.040.420.3517.6092.75
    韧皮部
    Phloem
    5.11.7812.240.380.310.684.67
    种芽
    Seed bud
    7.545.0045.000.350.352.502.50
    下载: 导出CSV

    表  2   试验因素与水平

    Table  2   Test factor and level

    水平
    Level
    种茎跌落高度(X1)/mm
    Seed stem drop height
    振动板安装倾斜角度(X2)/(°)
    Vibration plate mounting tilt angle
    振动板振动频率(X3)/Hz
    Vibration plate vibration frequency
    −1.682120.0015.0055.00
    −1132.1616.8258.04
    0150.0019.5062.50
    1167.8422.1866.96
    1.682180.0024.0070.00
    下载: 导出CSV

    表  3   试验方案与结果

    Table  3   Test plan and result

    序号X1/mmX2/(°)X3/HzY1/MPaY2/MPaY3Y4
    1132.1616.8258.0424.318.210.0450.776
    2167.8416.8258.0424.438.310.0460.787
    3132.1622.1858.0428.2111.420.0630.912
    4167.8422.1858.0429.7112.610.0690.957
    5132.1616.8266.9626.4410.120.0560.891
    6167.8416.8266.9629.2216.220.0910.943
    7132.1622.1866.9624.919.420.0520.813
    8167.8422.1866.9632.2117.230.0951.044
    9120.0019.5062.5025.728.740.0480.831
    10180.0019.5062.5032.4316.120.0871.052
    11150.0015.0062.5027.6310.320.0570.891
    12150.0024.0062.5030.1411.410.0630.973
    13150.0019.5055.0026.628.240.0450.861
    14150.0019.5070.0031.1614.420.0811.011
    15150.0019.5062.5028.6310.230.0560.923
    16150.0019.5062.5029.4211.240.0620.947
    17150.0019.5062.5029.1410.040.0550.883
    18150.0019.5062.5029.1410.820.0610.94
    19150.0019.5062.5028.7410.420.0570.934
    20150.0019.5062.5028.8210.720.0590.933
    21150.0019.5062.5029.4211.110.0610.951
    22150.0019.5062.5029.2610.610.0580.937
    23150.0019.5062.5029.4211.240.0620.947
    下载: 导出CSV
  • [1] 薛忠. 木薯茎秆切割力学特性与仿真分析[D]. 武汉: 华中农业大学, 2018.
    [2] 陈林涛, 刘兆祥, 牟向伟, 等. 预切种式木薯排种机构设计与试验[J]. 农业工程学报, 2023, 39(13): 1-13.
    [3] 牟向伟, 陈林涛, 马旭, 等. 预切种振动供种式木薯播种器勺链排种机构设计与试验[J]. 农业机械学报, 2023, 54(2): 20-31.
    [4] 段洁利, 张汉尧, 付函, 等. 基于高光谱成像技术的青香蕉碰撞损伤检测[J]. 农业工程学报, 2023, 39(7): 176-184.
    [5] 闫银发, 赵庆吉, 王瑞雪, 等. 四槽轮配肥器肥料颗粒碰撞掺混离散元分析与优化设计[J]. 农业机械学报, 2023, 54(3): 49-59.
    [6] 曹明珠, 高学梅, 王建楠, 等. 紫云英种子力学性能与脱粒碰撞损伤机理研究[J]. 中国农机化学报, 2022, 43(5): 77-84.
    [7] 张磊, 刘欢, 胡志新, 等. 固体物料造粒碰撞过程有限元仿真研究[J]. 兵器材料科学与工程, 2022, 45(1): 94-98.
    [8] 徐立章, 李耀明. 稻谷与钉齿碰撞损伤的有限元分析[J]. 农业工程学报, 2011, 27(10): 27-32.
    [9] 陈燕, 蔡伟亮, 邹湘军, 等. 荔枝的力学特性测试及其有限元分析[J]. 农业工程学报, 2011, 27(12): 358-363.
    [10] 张荣荣, 李小昱, 王为, 等. 基于有限元方法的板栗破壳力学特性分析[J]. 农业工程学报, 2008, 24(9): 84-88.
    [11]

    HUSSAIN N N, REGALLA S P, RAO Y V D. Techniques for correlation of drop weight impact testing and numerical simulation for composite GFRP crash boxes using Ls-DYNA[J]. International Journal of Crashworthiness, 2022, 27(3): 700-716. doi: 10.1080/13588265.2020.1837478

    [12] 袁越锦, 袁月定, 党新安, 等. 板栗真空破壳力学特性有限元分析[J]. 农业机械学报, 2011, 42(5): 136-141.
    [13] 陈林涛, 薛俊祥, 牟向伟, 等. 预切种木薯播种器阶梯式振动散种机构设计与试验[J]. 农业工程学报, 2022, 38(8): 27-37.
    [14] 王冬, 陈度, 王书茂, 等. 基于有限元方法的整形果树振动收获机理分析[J]. 农业工程学报, 2017, 33(S1): 56-62.
图(14)  /  表(3)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  26
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 网络出版日期:  2024-03-20
  • 发布日期:  2024-03-11
  • 刊出日期:  2024-05-09

目录

    /

    返回文章
    返回