• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

利用单片段代换系鉴定水稻抗性淀粉相关基因

罗嘉锐, 竺正航, 郝晴文, 丁琳懿, 朱海涛, 张桂权, 王少奎, 杨维丰

罗嘉锐, 竺正航, 郝晴文, 等. 利用单片段代换系鉴定水稻抗性淀粉相关基因[J]. 华南农业大学学报, 2023, 44(5): 708-717. DOI: 10.7671/j.issn.1001-411X.202307017
引用本文: 罗嘉锐, 竺正航, 郝晴文, 等. 利用单片段代换系鉴定水稻抗性淀粉相关基因[J]. 华南农业大学学报, 2023, 44(5): 708-717. DOI: 10.7671/j.issn.1001-411X.202307017
LUO Jiarui, ZHU Zhenghang, HAO Qingwen, et al. Identification of resistant starch related genes in rice by single segment substitution lines[J]. Journal of South China Agricultural University, 2023, 44(5): 708-717. DOI: 10.7671/j.issn.1001-411X.202307017
Citation: LUO Jiarui, ZHU Zhenghang, HAO Qingwen, et al. Identification of resistant starch related genes in rice by single segment substitution lines[J]. Journal of South China Agricultural University, 2023, 44(5): 708-717. DOI: 10.7671/j.issn.1001-411X.202307017

利用单片段代换系鉴定水稻抗性淀粉相关基因

基金项目: 国家自然科学基金(32201841,32072040);中国博士后基金(2021M701265);岭南现代农业科学与技术广东省实验室开放课题(NT2021001);大学生创新创业训练计划(202310564035)
详细信息
    作者简介:

    罗嘉锐,硕士研究生,主要从事抗性淀粉形成机制研究,E-mail: luojiarui25@126.com

    通讯作者:

    王少奎,教授,博士,主要从事水稻重要农艺性状基因功能及设计育种应用研究,E-mail: shaokuiwang@scau.edu.cn

    杨维丰,博士,主要从事稻米品质基因功能及分子设计育种研究,E-mail: yangweifeng31@163.com

  • 中图分类号: S511;S331

Identification of resistant starch related genes in rice by single segment substitution lines

  • 摘要:
    目的 

    发掘稻米淀粉合成相关基因SBEIIb、SSIIaISA1的高抗性淀粉等位基因。

    方法 

    利用分子标记筛选携带SBEIIbSSIIaISA1的单片段代换系(Single segment substitution lines,SSSLs),利用改良的AOAC法测定SSSLs材料的抗性淀粉含量(w),通过Sanger测序分析不同SSSLs的SBEIIbSSIIaISA1基因序列,结合基因型和表型连锁分析,鉴定影响抗性淀粉含量的等位基因。

    结果 

    SBEIIb编码区的1个SNP(Ex4-96G/A)引起1个氨基酸的替换(196-Arg/His),从而产生2种等位基因SBEIIb-1SBEIIb-2。其中,SBEIIb-1的Ex4-96G导致第196位氨基酸为Arg,表现为高抗性淀粉含量,为1.72%。SSIIa第8外显子的2个SNPs(Ex8–334G/A和Ex8–865C/T)引起2个氨基酸替换(604-Gly/Ser和781-Leu/Phe),从而产生3种等位基因SSIIa-1SSIIa-2SSIIa-3。其中,SSIIa-1的Ex8–334G和Ex8–865C导致第604和781位氨基酸为Gly和Leu,表现为高抗性淀粉含量,为3.37%。ISA1编码区序列的1个Indel(AGG/---)和1个SNP(Ex17–117C/T)导致第70位氨基酸Glu缺失和第717位氨基酸由Thr变为Met,从而产生3种等位基因ISA1-1ISA1-2ISA1-3。其中,ISA1-1编码区的AGG插入和Ex17–117C导致第70和717位氨基酸为Glu和Thr,表现为高抗性淀粉含量,为2.09%。

    结论 

    SBEIIb、SSIIaISA1是影响水稻抗性淀粉形成的重要基因,这3个基因编码区的SNPs和Indels引起了氨基酸的改变,继而影响了抗性淀粉的含量,鉴定到了3个高抗性淀粉含量的等位基因SBEIIb-1SSIIa-1ISA1-1

    Abstract:
    Objective 

    To discover the alleles for high resistance starch in starch-synthesis-related genes SBEIIb, SSIIa and ISA1.

    Method 

    The single segment substitution lines (SSSLs) carrying the starch-synthesis-related genes SBEIIb, SSIIa or ISA1 were detected using molecular markers. Then, the resistant starch contents of the SSSLs were measured using an improved AOAC method. Sanger sequencing and sequence alignment were performed to analyze the sequence variations of SBEIIb, SSIIa and ISA1 in different SSSLs. Through linkage analysis of genotypes and phenotypes, the alleles affecting resistance starch content were identified.

    Result 

    For SBEIIb gene, a single nucleotide polymorphism (SNP) (Ex4-96G/A) in the coding region results in an amino acid substitution (196-Arg/His), generating two alleles SBEIIb-1 and SBEIIb-2. SBEIIb-1 carrying the Ex4-96G causes Arg at 196th residue, which shows high-resistant starch content of 1.72%. For SSIIa gene, two SNPs (Ex8-334G/A and Ex8-865C/T) in the 8th exon cause two amino acid substitutions (604-Gly/Ser and 781-Leu/Phe), generating three alleles SSIIa-1,SSIIa-2 and SSIIa-3. SSIIa-1 carrying the Ex8-334G and Ex8-865C causes Gly and Leu at 604th and 781th residue respectively, which shows high-resistant starch content of 3.37%. One Indel (AGG/---) and one SNP (C/T) in ISA1 coding region sequence generate three alleles ISA1-1, ISA1-2 and ISA1-3. ISA1-1 carrying AGG-insertion and Ex17-117C causes Glu and Thr at 70th and 717th residue respectively, which shows high-resistant starch content of 2.09%.

    Conclusion 

    SBEIIb, SSIIa and ISA1 are key genes regulating resistant starch formation in rice. The SNPs and Indels in coding regions of the three genes lead to amino acid variations, which subsequently affects the resistance starch content. The three alleles SBEIIb-1, SSIIa-1 and ISA1-1 for high-resistant starch content are identified.

  • 图  1   分别携带SBEIIbSSIIaISA1的SSSLs代换片段长度及在HJX74染色体上的位置

    Figure  1.   The lengths of the target substituted segments of SSSLs carrying SBEIIb, SSIIa and ISA1, respectively, and their positions on the chromosomes of HJX74

    图  2   分别携带SBEIIbSSIIaISA1的SSSLs的抗性淀粉含量

    “**”表示SSSLs的抗性淀粉含量与受体亲本HJX74差异显著(P < 0.01,Dunnett’s t 测验,n = 3)

    Figure  2.   The resistant starch contents of the SSSLs carrying SBEIIb, SSIIa and ISA1, respectively

    “**” represents significant difference of the resistant starch between SSSLs and recipient HJX74 (P < 0.01, Dunnett’s t-test, n = 3)

    图  3   SSSLs中的SBEIIb等位变异

    a:SBEIIb的基因结构示意图;b:SBEIIb蛋白的功能结构域示意图;c:SBEIIb的等位变异蛋白的三维同源性建模

    Figure  3.   The allelic variations of SBEIIb in SSSLs

    a: Gene structure schematic of SBEIIb; b:The schematic illustration of SBEIIb protein functional domains; c: Three-dimensional homology modeling of allelic variant proteins of SBEIIb

    图  4   SSSLs中的SSIIa等位变异

    a:SSIIa的基因结构示意图;b:SSIIa蛋白的功能结构域示意图;c:SSIIa的等位变异蛋白的三维同源性建模

    Figure  4.   The allelic variations of SSIIa in SSSLs

    a: Gene structure schematic of SSIIa; b:The schematic illustration of SSIIa protein functional domains; c: Three-dimensional homology modeling of allelic variant proteins of SSIIa

    图  5   SSSLs中的ISA1等位变异

    a:ISA1的基因结构示意图;b:ISA1蛋白的功能结构域示意图;c:ISA1的等位变异蛋白的三维同源性建模

    Figure  5.   The allelic variations of ISA1 in SSSLs

    a: Gene structure schematic of ISA1; b:The schematic illustration of ISA1 protein functional domains; c: Three-dimensional homology modeling of allelic variant proteins of ISA1

    表  1   用于本研究的单片段代换系信息

    Table  1   The information of SSSLs used in this study

    编号
    Code
    单片段代换系名称
    SSSL name
    染色体
    Chr.
    携带的基因
    Carrying gene
    供体亲本
    Donor
    亚种类型
    Subspecies
    04-02 W04-47-61-02-04 2 SBEIIb BG367 籼稻 Indica
    07-02 W07-11-06-04-07-03 2 SBEIIb 苏御糯 Suyunuo 粳稻 Japonica
    12-02 W12-09-28-04-01-07-01 2 SBEIIb IR58025B 籼稻 Indica
    15-02 W15-12-10-11-07 2 SBEIIb American Jasmine 籼稻 Indica
    27-02 W27-18-05-08-01 2 SBEIIb IAPAR9 粳稻 Japonica
    02-06 W02-15-01-08-02-05 6 SSIIa Amol 3 籼稻 Indica
    08-06 W08-18-09-09-06-02 6 SSIIa IR64 籼稻 Indica
    12-06 W12-42-42-08-02-04-02 6 SSIIa IR58025B 籼稻 Indica
    14-06 W14-12-03-06-04-08 6 SSIIa 联鉴33 Lianjian33 籼稻 Indica
    15-06 W15-06-06-21 6 SSIIa American Jasmine 籼稻 Indica
    18-06 W18-11-01-02-06-06-04 6 SSIIa IRAT 261 粳稻 Japonica
    21-06 W21-23-36-06-07-04-06 6 SSIIa IR65598 粳稻 Japonica
    04-08 W04-10-04-10-07-06 8 ISA1 BG367 籼稻 Indica
    05-08 W05-36-75-01-01-06 8 ISA1 籽恢100 Zihui100 籼稻 Indica
    07-08 W07-18-05-01-09-03-05 8 ISA1 苏御糯 Suyunuo 粳稻 Japonica
    08-08 W08-15-06-05-11 8 ISA1 IR64 籼稻 Indica
    09-08 W09-38-60-07-07-11-06 8 ISA1 Basmati 385 籼稻 Indica
    11-08 W11-15-08-09-04 8 ISA1 Basmati 370 籼稻 Indica
    13-08 W13-30-45-01-10-02-06 8 ISA1 江西丝苗 Jiangxisimiao 籼稻 Indica
    14-08 W14-09-06-09-12 8 ISA1 联鉴33 Lianjian33 籼稻 Indica
    下载: 导出CSV

    表  2   SSSLs中的不同SBEIIb等位基因的基因型和表型

    Table  2   Genotypes and phenotypes of different SBEIIb alleles in SSSLs

    编号
    Code
    Ex4-96
    (P.196)
    Ex8-36
    (P.270)
    Ex12-19
    (P.412)
    Ex12-109
    (P.442)
    单倍型
    Haplotype
    等位基因
    Allele
    w(抗性淀粉)1)/%
    Resistant starch content
    04-02CGC (Arg)TCA (Ser)ACA (Thr)CTG (Leu)HT-1SBEIIb-11.82±0.03A
    12-02CGC (Arg)TCA (Ser)ACA (Thr)CTG (Leu)HT-1SBEIIb-11.71±0.01A
    15-02CGC (Arg)TCA (Ser)ACA (Thr)CTG (Leu)HT-1SBEIIb-11.63±0.05A
    HJX74CAC (His)TCA (Ser)ACA (Thr)CTG (Leu)HT-2SBEIIb-20.72±0.03B
    07-02CAC (His)TCT (Ser)ACC (Thr)CTT (Leu)HT-3SBEIIb-20.82±0.03B
    27-02CAC (His)TCT (Ser)ACC (Thr)CTT (Leu)HT-3SBEIIb-20.75±0.03B
     1) 抗性淀粉含量数据为早、晚季的平均值±标准误(n = 6);该列数据后的不同大写字母表示显著差异(P < 0.01,Duncan’s法)
     1) The data of resistant starch content are represented as mean ± SE of the early and late seasons (n = 6); Different uppercase letters of this column indicate significant differences (P < 0.01, Duncan’s test)
    下载: 导出CSV

    表  3   SSSLs中的不同SSIIa等位基因的基因型和表型

    Table  3   Genotypes and phenotypes of different SSIIa alleles in SSSLs

    编号
    Code
    Ex8-334
    (P.604)
    Ex8-438
    (P.638)
    Ex8-864
    (P.780)
    Ex8-865
    (P.781)
    单倍型
    Haplotype
    等位基因
    Allele
    w(抗性淀粉)1)/%
    Resistant starch content
    08-06GGC (Gly)GGG (Gly)GGG (Gly)CTC (Leu)HT-1SSIIa-13.37±0.06A
    21-06AGC (Ser)GGT (Gly)GGG (Gly)CTC (Leu)HT-2SSIIa-22.19±0.08B
    02-06AGC (Ser)GGT (Gly)GGT (Gly)TTC (Phe)HT-3SSIIa-30.71±0.03C
    12-06AGC (Ser)GGT (Gly)GGT (Gly)TTC (Phe)HT-3SSIIa-30.77±0.02C
    14-06AGC (Ser)GGT (Gly)GGT (Gly)TTC (Phe)HT-3SSIIa-30.78±0.02C
    15-06AGC (Ser)GGT (Gly)GGT (Gly)TTC (Phe)HT-3SSIIa-30.82±0.03C
    18-06AGC (Ser)GGT (Gly)GGT (Gly)TTC (Phe)HT-3SSIIa-30.83±0.04C
    HJX74AGC (Ser)GGT (Gly)GGT (Gly)TTC (Phe)HT-3SSIIa-30.72±0.03C
     1) 抗性淀粉含量数据为早、晚季的平均值±标准误(n = 6);该列数据后的不同大写字母表示显著差异(P < 0.01,Duncan’s法)
     1) The data of resistant starch content are represented as mean ± SE of the early and late seasons (n = 6); Different uppercase letters of this column indicate significant differences (P < 0.01, Duncan’s test)
    下载: 导出CSV

    表  4   SSSLs中的不同ISA1等位基因的基因型和表型

    Table  4   Genotypes and phenotypes of different ISA1 alleles in SSSLs

    编号
    Code
    Ex1-209~211
    (P.70~71)
    Ex6-31
    (P.336)
    Ex16-3
    (P.353)
    Ex17-117
    (P.717)
    Ex18-109
    (P.777)
    单倍型
    Haplotype
    等位基因
    Allele
    w(抗性淀粉)1)/%
    Resistant starch content
    09-08GAGGGT (Glu-Gly)AAC (Asn)GTC (Val)ACG (Thr)CTG (Leu)HT-1ISA1-12.17±0.03A
    11-08GAGGGT (Glu-Gly)AAC (Asn)GTC (Val)ACG (Thr)CTG (Leu)HT-1ISA1-12.02±0.04A
    08-08GAGGGT (Glu-Gly)AAT (Asn)GTT (Val)ATG (Met)CTG (Leu)HT-2ISA1-21.07±0.03B
    HJX74G---GT (Gly)AAT (Asn)GTT (Val)ATG (Met)CTG (Leu)HT-3ISA1-30.72±0.03C
    05-08G---GT (Gly)AAT (Asn)GTT (Val)ATG (Met)CTG (Leu)HT-3ISA1-30.65±0.04C
    13-08G---GT (Gly)AAT (Asn)GTT (Val)ATG (Met)CTG (Leu)HT-3ISA1-30.81±0.02C
    14-08G---GT (Gly)AAT (Asn)GTT (Val)ATG (Met)CTG (Leu)HT-3ISA1-30.79±0.03C
    04-08G---GT (Gly)AAT (Asn)GTT (Val)ATG (Met)CTT (Leu)HT-4ISA1-30.83±0.02C
    07-08G---GT (Gly)AAT (Asn)GTT (Val)ATG (Met)CTT (Leu)HT-4ISA1-30.77±0.02C
     1) 抗性淀粉含量数据为早、晚季的平均值±标准误(n = 6);该列数据后的不同大写字母表示显著差异(P < 0.01,Duncan’s法)
     1) The data of resistant starch content are represented as mean ± SE of the early and late seasons (n = 6); Different uppercase letters of this column indicate significant differences (P < 0.01, Duncan’s test)
    下载: 导出CSV
  • [1]

    KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology, 2005, 59(1): 1-6. doi: 10.1007/s11103-005-2159-5

    [2]

    ZOU W, BUTARDO V M, TOUTOUNJI M, et al. Harnessing particle disintegration of cooked rice grains for predicting glycaemic index[J]. Carbohydrate Polymers, 2020, 248: 116789. doi: 10.1016/j.carbpol.2020.116789

    [3]

    RAIGOND P, EZEKIEL R, RAIGOND B. Resistant starch in food: A review[J]. Journal of the Science of Food and Agriculture, 2015, 95(10): 1968-1978. doi: 10.1002/jsfa.6966

    [4] 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325.
    [5] 郑宝东, 王琦, 郑亚凤, 等. 抗性淀粉的生物学功效及在食品加工中的应用[J]. 食品科学技术学报, 2015, 33(5): 1-7. doi: 10.3969/j.issn.2095-6002.2015.05.001
    [6] 朱平, 孔祥礼, 包劲松. 抗性淀粉在食品中的应用及功效研究进展[J]. 核农学报, 2015, 29(2): 327-336. doi: 10.11869/j.issn.100-8551.2015.02.0327
    [7]

    BAO J, ZHOU X, XU F, et al. Genome-wide association study of the resistant starch content in rice grains[J]. Starch - Stärke, 2017, 69(7/8): 1600343.

    [8] 林静, 张云辉, 张所兵, 等. 水稻地方品种高抗性淀粉含量QTL挖掘与定位[J]. 江苏农业科学, 2021, 49(23): 58-61.
    [9] 魏霞, 徐延浩, 丁保淼, 等. 抗性淀粉及其遗传改良研究进展[J]. 长江大学学报(自然科学版), 2019, 16(8): 101-107.
    [10]

    YANG R, BAI J, FANG J, et al. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice[J]. Breeding Science, 2016, 66(4): 481-489. doi: 10.1270/jsbbs.16037

    [11]

    SHEN L, LI J, LI Y. Resistant starch formation in rice: Genetic regulation and beyond[J]. Plant Communications, 2022, 3(3): 100329. doi: 10.1016/j.xplc.2022.100329

    [12]

    SUN Y, JIAO G, LIU Z, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science, 2017, 8: 298.

    [13]

    ZHANG G, CHENG Z, ZHANG X, et al. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L. ) uncovers interactive effects on the physicochemical properties of starch[J]. Genome, 2011, 54(6): 448-459. doi: 10.1139/g11-010

    [14]

    ZHOU H, WANG L, LIU G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12844-12849.

    [15]

    PAN L, CHEN F, YANG Y, et al. The underlying starch structures of rice grains with different digestibilities but similarly high amylose contents[J]. Food Chemistry, 2022, 379: 132071. doi: 10.1016/j.foodchem.2022.132071

    [16]

    LEHMANN U, ROBIN F. Slowly digestible starch–its structure and health implications: A review[J]. Trends in Food Science & Technology, 2007, 18(7): 346-355.

    [17]

    RAMADOSS B R, GANGOLA M P, AGASIMANI S, et al. Starch granule size and amylopectin chain length influence starch in vitro enzymatic digestibility in selected rice mutants with similar amylose concentration[J]. Journal of Food Science and Technology, 2019, 56(1): 391-400. doi: 10.1007/s13197-018-3500-8

    [18] 姚姝, 张亚东, 路凯, 等. 水稻可溶性淀粉合成酶基因SSIIaSSⅢa的功能、等位变异及其互作研究进展[J]. 中国水稻科学, 2022, 36(3): 227-236.
    [19] 方结红, 张明洲, 刘军, 等. 水稻ISA1基因的克隆与分析[J]. 安徽农业科学, 2010, 38(9): 4440-4441.
    [20]

    CHAO S F, CAI Y C, FENG B B, et al. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation[J]. Rice Science, 2019, 26(2): 77-87. doi: 10.1016/j.rsci.2018.07.001

    [21]

    FUJITA N, KUBO A, SUH D, et al. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm[J]. Plant and Cell Physiology, 2003, 44(6): 607-618. doi: 10.1093/pcp/pcg079

    [22] 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760.
    [23]

    KAWAGOE Y, KUBO A, SATOH H, et al. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm[J]. The Plant Journal, 2005, 42(2): 164-174. doi: 10.1111/j.1365-313X.2005.02367.x

    [24]

    SAWADA T, ITOH M, NAKAMURA Y. Contributions of three starch branching enzyme isozymes to the fine structure of amylopectin in rice endosperm[J]. Frontiers in Plant Science, 2018, 9: 1536. doi: 10.3389/fpls.2018.01536

    [25]

    MIURA S, KOYAMA N, CROFTS N, et al. Generation and starch characterization of non-transgenic BEI and BEIIb double mutant rice (Oryza sativa) with ultra-high level of resistant starch[J]. Rice, 2021, 14(1): 3. doi: 10.1186/s12284-020-00441-0

    [26]

    GUO D, LING X, ZHOU X, et al. Evaluation of the quality of a high-resistant starch and low-glutelin rice (Oryza sativa L.) Generated through CRISPR/Cas9-mediated targeted mutagenesis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(36): 9733-9742. doi: 10.1021/acs.jafc.0c02995

    [27]

    YANG R, SUN C, BAI J, et al. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L. )[J]. PLoS One, 2012, 7(8): e43026. doi: 10.1371/journal.pone.0043026

    [28]

    BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]. Journal of Experimental Botany, 2011, 62(14): 4927-4941. doi: 10.1093/jxb/err188

    [29]

    GAO Z, ZENG D, CHENG F, et al. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. Journal of Integrative Plant Biology, 2011, 53(9): 756-765.

    [30]

    CHEN Z, LU Y, FENG L, et al. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice[J]. Rice, 2020, 13(1): 39. doi: 10.1186/s12284-020-00393-5

    [31]

    YOU H, LIANG C, ZHANG O, et al. Variation of resistant starch content in different processing types and their starch granules properties in rice[J]. Carbohydrate Polymers, 2022, 276: 118742. doi: 10.1016/j.carbpol.2021.118742

    [32]

    NAKAMURA Y, FRANCISCO P B, HOSAKA Y, et al. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties[J]. Plant Molecular Biology, 2005, 58(2): 213-227. doi: 10.1007/s11103-005-6507-2

    [33] 张风琴, 于雪然, 李玲, 等. 基于高密度遗传图谱对水稻抗性淀粉QTL定位及分析[J]. 植物遗传资源学报, 2023, 24(4): 1075-1084.
图(5)  /  表(4)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  13
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-09-11
  • 刊出日期:  2023-09-09

目录

    /

    返回文章
    返回