皇竹草生长和生理特性对疏浚土含水量变化的响应

    郭勤莉, 苏立城, 郑峰霖, 谢姗宴, 吴道铭, 曾曙才

    郭勤莉, 苏立城, 郑峰霖, 等. 皇竹草生长和生理特性对疏浚土含水量变化的响应[J]. 华南农业大学学报, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006
    引用本文: 郭勤莉, 苏立城, 郑峰霖, 等. 皇竹草生长和生理特性对疏浚土含水量变化的响应[J]. 华南农业大学学报, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006
    GUO Qinli, SU Licheng, ZHENG Fenglin, et al. Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil[J]. Journal of South China Agricultural University, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006
    Citation: GUO Qinli, SU Licheng, ZHENG Fenglin, et al. Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil[J]. Journal of South China Agricultural University, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006

    皇竹草生长和生理特性对疏浚土含水量变化的响应

    基金项目: 广东省林业科技创新项目(2022KJCX015)
    详细信息
      作者简介:

      郭勤莉,硕士研究生,主要从事森林生态与环境研究,E-mail: 2052733985@qq.com

      通讯作者:

      曾曙才,教授,博士,主要从事森林生态学研究,E-mail: sczeng@scau.edu.cn

    • 中图分类号: X736;S156.99

    Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil

    • 摘要:
      目的 

      研究在不同含水量疏浚土中皇竹草Pennisetum hydridum的生长、生理特性及动态变化规律,探明皇竹草在疏浚土上生长的最适含水量,为新近吹填疏浚土的生态固化提供理论依据。

      方法 

      选用皇竹草为供试植物,通过盆栽试验,设置20%(T1)、30%(T2)、40%(T3)、50%(T4) 4个含水量(w)处理,分析皇竹草的生长、养分吸收、水分蒸腾、叶片和根系生理特性。

      结果 

      皇竹草在T2处理中生长表现最佳,T2处理的株高(152 cm)、单株干质量(88.51 g)以及单株氮、磷、钾吸收量(505.72、99.39、1703.45 mg)等数值均显著高于其他处理(P<0.05)。随着疏浚土含水量的增加,皇竹草的日耗水量、耗水速率、净光合速率、气孔导度和蒸腾速率均呈先升后降趋势,且均在T2处理达到最大值,并显著高于其他处理(P<0.05);皇竹草酶活性指标在T1和T4处理均高于其他处理,在T2处理达到最低。综合评价结果表明,皇竹草生长对疏浚土含水量(w)适应性强弱排序为:30%>40%>50%>20%。

      结论 

      综合各项指标,30%(w)疏浚土含水量最有利于皇竹草的生长、养分吸收和蒸腾耗水,皇竹草在水淹胁迫(T3、T4)中的各项生长指标优于干旱胁迫(T1)。以上结果可供实际生产应用中疏浚土的浅层固化、植物资源利用等参考。

      Abstract:
      Objective 

      To study the growth, physiological characteristics and their dynamic changes of Pennisetum hydridum in dredged soils with different water contents, find out the optimal water content for the growth of P. hydridum in dredged soils, and provide a theoretical reference for the ecological solidification method of newly blown and filled dredged soil.

      Method 

      Four water content (w) treatments of 20% (T1), 30% (T2), 40% (T3) and 50% (T4) were set up to analyze the growth, nutrient absorption, water transpiration, leaf and root physiological characteristics of P. hydridum through potting experiment.

      Result 

      The growth performance of P. hydridum was the best in T2, and the plant height (152 cm), dry mass per plant (88.51 g) and N, P and K uptake per plant (505.72, 99.39, 1 703.45 mg) of T2 were significantly higher than those of other treatments (P<0.05). The daily water consumption, water consumption rate, net photosynthetic rate, stomatal conductance and transpiration rate of P. hydridum all increased first and then decreased with the increase of soil water content, and all reached the maximum in T2 and were significantly higher than those of other treatments (P<0.05). The enzyme activity indexes of P. hydridum were higher in T1 and T4 than those of other treatments, and reached the lowest in T2. The comprehensive evaluation results showed that the growth adaptability of P. hydridum to water content in dredged soil was as follows: 30% > 40% > 50% > 20%.

      Conclusion 

      Based on the various indicators, the water content of 30% in dredged soil is the most conducive to growth, nutrient absorption and transpiration and water consumption of P. hydridum, and the growth performance of P. hydridum in flooding stress (T3, T4) was better than that of drought stress (T1). These results can be used as a reference for shallow solidification of dredged soil and utilization of plant resources in practical production applications.

    • 图  1   疏浚土不同含水量对皇竹草生长状况的影响

      各图中,同一指标柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

      Figure  1.   Effects of different dredged soil water contents on the growth status of Pennisetum hydridum

      In each figure, different lowercase letters on the bars of the same index indicated significant differences among different treatments (P<0.05, Duncan’s method)

      图  2   疏浚土不同含水量对皇竹草养分元素吸收量的影响

      各图中,同一指标柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

      Figure  2.   Effects of different dredged soil water contents on nutrient uptake of Pennisetum hydridum

      In each figure, different lowercase letters on the bars of the same index indicated significant differences among different treatments (P<0.05, Duncan’s method)

      图  3   疏浚土不同含水量对皇竹草耗水量和耗水速率的影响

      各折线上不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

      Figure  3.   Effects of different dredged soil water contents on water consumption and water consumption rate of Pennisetum hydridum

      Different lowercase letters on each line indicated significant differences among different treatments (P<0.05, Duncan’s method)

      图  4   疏浚土不同含水量对皇竹草光合特性的影响

      各图中,相同月份柱子上方的的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

      Figure  4.   Effects of different dredged soil water contents on photosynthetic characteristics of Pennisetum hydridum

      In each figure, different lowercase letters on the bars of the same month indicated significant differences among different treatments (P<0.05, Duncan’s method)

      图  5   疏浚土不同含水量对皇竹草叶片和根系生理的影响

      各图中,相同部位柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

      Figure  5.   Effects of different dredged soil water contents on leaf and root physiology of Pennisetum hydridum

      In each figure, different lowercase letters on the bars of the same plant part indicated significant differences among different treatments (P<0.05, Duncan’s method)

      表  1   主成分分析成分矩阵

      Table  1   Matrix of principal component analysis component

      指标
      Index
      主成分 Principal component
      123
      耗水量 Water consumption 0.942 0.240 0.199
      耗水速率 Water consumption rate 0.535 0.554 0.411
      净光合速率 Net photosynthetic rate 0.941 0.239 0.064
      气孔导度 Stomatal conduction 0.878 0.288 0.258
      胞间CO2浓度 Intercellular CO2 concentration 0.369 0.648 0.629
      蒸腾速率 Transpiration rate 0.955 0.202 −0.051
      根系可溶性蛋白含量 Root soluble protein content 0.955 0.008 −0.119
      根系超氧化物歧化酶活性 Root superoxide dismutase activity 0.022 −0.910 0.257
      根系过氧化物酶活性 Root peroxidase activity −0.589 0.419 −0.220
      根系过氧化氢酶活性 Root catalase activity −0.910 −0.031 0.306
      叶片可溶性蛋白含量 Leaf soluble protein content 0.968 −0.176 −0.121
      叶片超氧化物歧化酶活性 Leaf superoxide dismutase activity −0.869 −0.193 0.125
      叶片过氧化物酶活性 Leaf peroxidase activity −0.635 0.526 −0.422
      叶片过氧化氢酶活性 Leaf catalase activity −0.817 0.360 0.015
      株高 Plant height 0.914 −0.098 0.014
      叶片数 Number of blade 0.329 −0.507 −0.043
      叶面积 Leaf area 0.969 0.119 0.109
      地上部干质量 Aboveground dry mass 0.979 −0.003 −0.151
      地下部干质量 Underground dry mass 0.949 −0.182 0.128
      根冠比 Root shoot ratio −0.579 −0.354 0.634
      地上部N吸收量 Aboveground N uptake 0.960 −0.037 −0.196
      地上部P吸收量 Aboveground P uptake 0.972 −0.077 −0.157
      地上部K吸收量 Aboveground K uptake 0.965 0.008 −0.198
      地下部N吸收量 Underground N uptake 0.937 −0.232 −0.059
      地下部P吸收量 Underground P uptake 0.969 −0.042 0.002
      地下部K吸收量 Underground K uptake 0.956 −0.099 0.236
      特征值 Eigenvalue 18.33 2.96 1.73
      贡献率/% Contribution rate 70.51 11.37 6.63
      累积贡献率/% Cumulative contribution rate 70.51 81.88 88.51
      下载: 导出CSV

      表  2   主成分分析综合得分

      Table  2   Composite score of principal component analysis

      处理
      Treatment
      主成分得分 Principal component score综合得分
      Comprehensive score
      排序
      Sort
      123
      T1−3.26−2.11−1.03−2.614
      T26.86−0.01−0.394.811
      T3−0.73−0.32.02−0.422
      T4−2.862.41−0.59−1.793
      下载: 导出CSV
    • [1]

      DEVELIOGLU I, PULAT H F. Compressibility behaviour of natural and stabilized dredged soils in different organic matter contents[J]. Construction and Building Materials, 2019, 228: 116787. doi: 10.1016/j.conbuildmat.2019.116787.

      [2]

      CHU S H, YAO J J. A strength model for concrete made with marine dredged sediment[J]. Journal of Cleaner Production, 2020, 274: 122673. doi: 10.1016/j.jclepro.2020.122673.

      [3]

      WANG L, YEUNG T L K, LAU A Y T, et al. Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing[J]. Journal of Cleaner Production, 2017, 164: 1279-1288. doi: 10.1016/j.jclepro.2017.07.070

      [4]

      WANG L, SHAO Y, ZHAO Z, et al. Optimized utilization studies of dredging sediment for making water treatment ceramsite based on an extreme vertex design[J]. Journal of Water Process Engineering, 2020, 38: 101603. doi: 10.1016/j.jwpe.2020.101603.

      [5]

      PARK J, SON Y, NOH S, et al. The suitability evaluation of dredged soil from reservoirs as embankment material[J]. Journal of Environmental Management, 2016, 183: 443-452.

      [6]

      TODA K, KIKUCHI R, OTAKE T, et al. Effect of soil organic matters in dredged soils to utilization of their mixtures made with a steel slag[J]. Materials, 2020, 13(23): 5450. doi: 10.3390/ma13235450.

      [7] 吴华林, 赵德招, 程海峰. 我国疏浚土综合利用存在问题及对策研究[J]. 水利水运工程学报, 2013(1): 8-14.
      [8] 张更生, 徐继涛, 尹崧宇. 疏浚吹填粉土固化室内试验[J]. 水运工程, 2018(9): 54-58.
      [9] 陈彦霖. 疏浚淤泥的固化处理技术与资源化利用[J]. 中国设备工程, 2020(20): 11-12.
      [10]

      STEPPE K, VANDEGEHUCHTE M W, TOGNETTI R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning[J]. Tree Physiology, 2015, 35(4): 341-345. doi: 10.1093/treephys/tpv033

      [11]

      ZHAO W, DONG X, WU Z, et al. Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status[J]. Journal of Hydrology, 2022, 615: 128671. doi: 10.1016/j.jhydrol.2022.128671.

      [12] 陈广明, 张祝培, 毕世明, 等. 利用皇竹草生态固化浅表层疏浚土试验研究[J]. 水运工程, 2021(9): 16-22.
      [13]

      ZHAO J, ZHANG W, WANG K, et al. Responses of the soil nematode community to management of hybrid napiergrass: The trade-off between positive and negative effects[J]. Applied Soil Ecology, 2014, 75: 134-144. doi: 10.1016/j.apsoil.2013.10.011

      [14] 何琳, 祝其丽, 王彦伟, 等. 多年生禾草皇竹草的综合利用研究进展[J]. 应用与环境生物学报, 2020, 26(3): 705-712.
      [15]

      KANCHI G M, NEERAJA V S, SIVAKUMAR BABU G L S. Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil[J]. International Journal of Geomechanics, 2015, 15(1): 06014016. doi: 10.1061/(asce)gm.1943-5622.0000392.

      [16] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国标准出版社, 2018.
      [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
      [18] 李合生, 王学奎. 现代植物生理学[M]. 4版. 北京: 高等教育出版社, 2019.
      [19]

      SUN Y, WANG C, CHEN H Y H, et al. Response of plants to water stress: A meta-analysis[J]. Frontiers in Plant Science, 2020, 11: 978. doi: 10.3389/fpls.2020.00978.

      [20]

      YANG W, LIN K, WU C, et al. Effects of waterlogging with different water resources on plant growth and tolerance capacity of four herbaceous flowers in a bioretention basin[J]. Water, 2020, 12(6): 1619. doi: 10.3390/w12061619.

      [21]

      KARIMI M, AHMADI A, HASHEMI J, et al. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress[J]. South African Journal of Botany, 2019, 121: 394-401. doi: 10.1016/j.sajb.2018.11.028

      [22]

      XIAO C, SUN O J, ZHOU G, et al. Interactive effects of elevated CO2 and drought stress on leaf water potential and growth in Caragana intermedia[J]. Trees - Structure and Function, 2005, 19(6): 711-720.

      [23]

      MEZGEBE A, AZEREFEGNE F. Effect of water stress on glucosinolate content of Brassica carinata and performance of Brevicoryne brassicae and Myzus persicae[J]. International Journal of Tropical Insect Science, 2021, 41(2): 953-960. doi: 10.1007/s42690-020-00340-3

      [24]

      PATEL J, MISHRA A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis[J]. Physiologia Plantarum, 2021, 172(2): 1030-1044. doi: 10.1111/ppl.13324

      [25]

      ZHOU G, ZHOU X, NIE Y, et al. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials[J]. Plant, Cell & Environment, 2018, 41(11): 2589-2599.

      [26]

      ARANJUELO I, MOLERO G, ERICE G, et al. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L. )[J]. Journal of Experimental Botany, 2011, 62(1): 111-123. doi: 10.1093/jxb/erq249

      [27] 崔东阳, 贺亮亮, 刘崇怀, 等. 淹水胁迫对夏黑葡萄生理特性和品质的影响[J]. 生态学杂志, 2022, 41(12): 2344-2351.
      [28]

      PETERS E B, MCFADDEN J P, MONTGOMERY R A. Biological and environmental controls on tree transpiration in a suburban landscape[J]. Journal of Geophysical Research, 2010, 115(G4): G04006. doi: 10.1029/2009jg001266.

      [29] 张婵, 洪希群, 吴承祯, 等. 干旱胁迫对闽北乡土树种耗水及光合特性的影响[J]. 应用与环境生物学报, 2023, 29(1): 212-219.
      [30] 吴俊文, 刘珊, 李吉跃, 等. 干旱胁迫下广东石漠化地区造林树种光合和耗水特性[J]. 生态学报, 2016, 36(11): 3429-3440.
      [31]

      BLANKENAGEL S, YANG Z, AVRAMOVA V, et al. Generating plants with improved water use efficiency[J]. Agronomy, 2018, 8(9): 194. doi: 10.3390/agronomy8090194.

      [32] 欧芷阳, 庞世龙, 谭长强, 等. 干旱胁迫对桂西南石漠化地区主要造林树种光合与耗水特性的影响[J]. 生态学杂志, 2020, 39(10): 3237-3246.
      [33] 李吉跃, 周平, 招礼军. 干旱胁迫对苗木蒸腾耗水的影响[J]. 生态学报, 2002(9): 1380-1386.
      [34] 陈玉, 贾剑波, 颜成正, 等. 干旱胁迫下杉木叶片吸水及水分逆向运移特征[J]. 生态学杂志, 2023, 42(9): 2091-2099.
      [35] 常宏达, 吕德生, 王振华, 等. 滴灌量和有机无机肥等氮配施对葡萄产量及品质的影响[J]. 干旱地区农业研究, 2022, 40(4): 116-123.
      [36] 罗成威, 王若水, 王莉莎, 等. 不同水热调控方式对苹果−大豆间作系统土壤温度和根系分布的影响[J]. 水土保持学报, 2023, 37(2): 217-226.
      [37] 赵经华, 杨庭瑞, 胡文军, 等. 水氮互作对滴灌小麦土壤硝态氮运移、氮平衡及水氮利用效率的影响[J]. 中国农村水利水电, 2021(4): 141-149.
      [38]

      CALZADILLA P I, CARVALHO F E L, GOMEZ R, et al. Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops[J]. Environmental and Experimental Botany, 2022, 201: 104950. doi: 10.1016/j.envexpbot.2022.104950.

      [39]

      WERTIN T M, BELNAP J, REED S C. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged[J]. Functional Ecology, 2017, 31(2): 297-305. doi: 10.1111/1365-2435.12708

      [40] 李志鹏, 万素梅, 胡守林, 等. 不同灌水频率和灌溉定额对南疆无膜棉蕾铃时空分布及产量形成的影响[J]. 棉花学报, 2022, 34(5): 383-400.
      [41]

      DE OLLAS C, DODD I C. Physiological impacts of ABA-JA interactions under water-limitation[J]. Plant Molecular Biology, 2016, 91(6): 641-650. doi: 10.1007/s11103-016-0503-6

      [42]

      ZHANG X, SUN W, CHEN X, et al. Integrated physiological and transcriptomic analysis reveals mechanism of leaf in Phellodendron chinense Schneid. seedlings response to drought stress[J]. Industrial Crops and Products, 2023, 198: 116679. doi: 10.1016/j.indcrop.2023.116679.

      [43] 张蓉, 董禄信, 孙长红, 等. 秸秆粉碎覆盖沟播对旱地冬小麦产量及土壤水热特征的影响[J]. 节水灌溉, 2021(7): 60-64.
      [44] 赵文哲, 刘晓, 杜桂英, 等. 干旱胁迫及复水对M9T337苹果砧木苗生理特性的影响[J]. 山东农业科学, 2022, 54(4): 49-54,61.
      [45]

      RAKHRA G, KAUR T, VYAS D, et al. Molecular cloning, characterization, heterologous expression and in-silico analysis of disordered boiling soluble stress-responsive wBsSRP protein from drought tolerant wheat cv. PBW 175[J]. Plant Physiology and Biochemistry, 2017, 112: 29-44. doi: 10.1016/j.plaphy.2016.12.017

      [46] 桑子阳, 马履一, 陈发菊. 干旱胁迫对红花玉兰幼苗生长和生理特性的影响[J]. 西北植物学报, 2011, 31(1): 109-115.
      [47]

      DE CÁSSIA ALVES R, OLIVEIRA K R, LUCIO J C B, et al. Exogenous foliar ascorbic acid applications enhance salt-stress tolerance in peanut plants through increase in the activity of major antioxidant enzymes[J]. South African Journal of Botany, 2022, 150: 759-767. doi: 10.1016/j.sajb.2022.08.007

      [48]

      ABABAF M, OMIDI H, BAKHSHANDEH A. Changes in antioxidant enzymes activities and alkaloid amount of Catharanthus roseus in response to plant growth regulators under drought condition[J]. Industrial Crops and Products, 2021, 167: 113505. doi: 10.1016/j.indcrop.2021.113505.

      [49]

      YAVUZ D, KILIC E, SEYMEN M, et al. The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions[J]. Scientia Horticulturae, 2022, 304: 111272. doi: 10.1016/j.scienta.2022.111272.

      [50]

      ÁVILA-LOVERA E, WINTER K, GOLDSMITH G R. Evidence for phylogenetic signal and correlated evolution in plant-water relation traits[J]. New Phytologist, 2023, 237(2): 392-407. doi: 10.1111/nph.18565

      [51]

      DING C, XU C, LU B, et al. Comprehensive evaluation of rice qualities under different nitrogen levels in South China[J]. Foods, 2023, 12(4): 697. doi: 10.3390/foods12040697.

    • 期刊类型引用(0)

      其他类型引用(1)

    图(5)  /  表(2)
    计量
    • 文章访问数:  234
    • HTML全文浏览量:  45
    • PDF下载量:  46
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-07-18
    • 网络出版日期:  2023-12-12
    • 发布日期:  2023-11-01
    • 刊出日期:  2024-03-09

    目录

      Corresponding author: ZENG Shucai, sczeng@scau.edu.cn

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回