Analysis of blast resistance genes and panicle neck blast resistances of conventional indica rice varieties
-
摘要:目的
明确常规籼稻品种资源所携带的稻瘟病抗性基因及抗性效应。
方法利用PARMS SNP分型技术,检测14个稻瘟病抗性基因在121份常规籼稻品种中的分布情况,并进行田间穗颈瘟自然鉴定,分析基因型和抗性的关系。
结果大多数供试品种携带2~6个稻瘟病抗性基因,Pi46和Pia的检出率较低,分别为3.3%和7.4%;Pi54和Pi5检出率较高,分别为86.0%和67.8%;所有供试品种均不携带Pi9、Pigm、Pik-m和Pik。田间抗性鉴定结果表明,供试品种的穗颈瘟抗性普遍较弱,但广东品种的穗颈瘟抗性明显好于广西品种的;携带的抗性基因数量与穗颈瘟抗性间相关性不显著;Pi2和Pid3对穗颈瘟抗性贡献显著,优势比值分别为5.98和7.50;Pi2+Pid3+、Pi2+Pi33+和Pid3+Pi33+组合的田间穗颈瘟抗性表现较好。
结论本研究结果为两广籼稻区稻瘟病抗性基因聚合育种的亲本选择提供了理论支持,为常规稻的合理布局提供了科学参考。
Abstract:ObjectiveTo indentify the blast resistance genes and resistance effects of conventional indica rice variety resources.
MethodThe distribution of 14 blast resistance genes in 121 conventional indica rice varieties were genotyped using PARMS SNP typing technology. Natural identification of panicle neck blast was conducted in the field, and the relationship between genotype and resistance was analyzed.
ResultMost of the tested varieties carried 2−6 blast resistance genes. The detection rates of Pi46 and Pia were 3.3% and 7.4%, respectively. The detection rates of Pi54 and Pi5 were 86.0% and 67.8%, respectively. None of the tested varieties carried Pi9, Pigm, Pik-m, or Pik. Field resistance identification showed the resistances to panicle neck blast of the tested varieties were generally weak, yet the resistances of Guangdong varieties were significantly higher than those of Guangxi varieties. There was no significant correlation between the number of resistance genes and the resistance to panicle neck blast. Pi2 and Pid3 had significant contributions on the resistance to panicle neck blast, with the odds ratios of 5.98 and 7.50, respectively. The combinations of Pi2+Pid3+, Pi2+Pi33+ and Pid3+Pi33+ showed higher resistance to panicle neck blast.
ConclusionThe results of this study provides a theoretical support for the parent selection of pyramiding breeding using rice blast resistance genes in the indica rice regions of Guangdong and Guangxi, and provides scientific references for the rational layout of conventional rice.
-
Keywords:
- Indica rice /
- Rice blast resistance gene /
- Gene detection /
- Panicle neck blast
-
-
图 4 单个抗性基因对穗颈瘟抗性贡献的逻辑回归分析(a)及平均抗级(b)
图a中黑点上下黑线分别为各优势比的95%置信区间;图b中绿色柱表示携带某基因的平均抗级,蓝色柱表示不携带某基因的平均抗级,“**”表示与不携带该基因的材料差异显著(P<0.01, t检验)
Figure 4. Logistic regression analysis of contribution to resistance (a) and average resistance (b) of single gene to panicle neck blast
In figure a, the black lines above and below each black dot represent the 95% confidence intervals for each odds ratio; In figure b, the green column represents the average resistance of carrying a certain gene, the blue column represents the average resistance level of not carrying a certain gene , and “**” indicates significant difference from the material not carrying the gene (P<0.01, t test)
表 1 不同类型供试品种间抗性基因分布频率
Table 1 Distribution frequency of resistance genes in different types of tested varieties
% 品种类型
Type of varietyPi2 Pi5 Pi33 Pi46 Pi54 Pib Pid3 Pit Pita Pia 广西品种
Guangxi varieties13.3 74.7 22.7 5.3 81.3 33.3 10.7 28.0 44.0 5.3 广东品种
Guangdong varieties60.9 56.5 10.9 0 84.3 43.5 50.0 21.7 47.8 10.9 2011年前广西品种
Guangxi varieties before 20110 61.3 25.8 12.9 80.6 32.3 0 16.1 51.6 6.5 2011年前广东品种
Guangdong varieties before 201142.3 69.2 3.8 0.0 92.3 34.6 34.6 23.1 57.7 7.7 2011年后广西品种
Guangxi varieties after 201122.7 84.1 20.5 0.0 81.8 34.1 18.2 36.4 36.4 4.5 2011年后广东品种
Guangdong varieties after 201185.0 40.0 20.0 0.0 95.0 55.0 70.0 20.0 35.0 15.0 表 2 供试品种穗颈瘟抗级分布频率
Table 2 Distribution frequency of resistance level to panicle neck blast in tested varieties
% 品种类型
Type of variety0
(高抗 Highly resistant)1
(抗 Resistant)3
(中抗 Medium resistrant)5
(中感 Medium susceptible)7
(感 Susceptible)9
(高感 Highly susceptible)总供试品种
All tested vararieties0 4.9 15.7 28.1 18.2 33.1 广西品种
Guangxi varieties0 0 10.7 25.3 18.7 45.3 广东品种
Guangdong varieties0 13.1 23.9 32.6 17.4 13.0 -
[1] 夏小东, 袁筱萍, 余汉勇, 等. 中国稻种资源初级核心种质对稻瘟病的抗性聚类分析[J]. 华南农业大学学报, 2011, 32(2): 39-43. doi: 10.3969/j.issn.1001-411X.2011.02.009 [2] 何峰, 张浩, 刘金灵, 等. 水稻抗稻瘟病天然免疫机制及抗病育种新策略[J]. 遗传, 2014, 36(8): 756-765. [3] 张影, 朴日花, 陈莫军, 等. 水稻抗稻瘟病分子机制及分子育种研究进展[J/OL]. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220711.1634.006.html. [4] 王小军, 王丽锋. 水稻穗颈瘟发病特征、原因及其对策浅析[J]. 安徽农学通报, 2010, 16(2): 90-91. doi: 10.3969/j.issn.1007-7731.2010.02.049 [5] 刘军化, 黄成志, 蒋静玥, 等. 87 份水稻材料中抗稻瘟病基因的分子检测[J]. 西南农业学报, 2022, 35(9): 2030-2037. [6] 卢宣君, 苏珍珠, 刘小红, 等. 稻瘟病菌致病机制及绿色防控新策略[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 721-730. [7] 杨瑰丽, 张瑞祥, 王慧, 等. 利用分子标记辅助选择改良水稻保持系香味和稻瘟病抗性[J]. 华南农业大学学报, 2022, 43(3): 9-17. [8] 李晓蓉, 苏思荣, 张银霞, 等. Pita、Pib在宁夏及引进水稻种质资源中的分布及与穗颈瘟抗性的关系[J]. 河南农业科学, 2022, 51(10): 25-35. [9] 李刚, 袁彩勇, 曹奎荣, 等. 544份水稻种质稻瘟病抗性鉴定及抗性基因的分布研究[J]. 中国农业大学学报, 2018, 23(5): 22-28. doi: 10.11841/j.issn.1007-4333.2018.05.003 [10] 朱业宝, 方珊茹, 沈伟峰, 等. 国外引进水稻种质资源的稻瘟病抗性基因检测与评价[J]. 植物遗传资源学报, 2020, 21(2): 418-430. doi: 10.13430/j.cnki.jpgr.20190414003 [11] 王小秋, 杜海波, 陈夕军, 等. 江苏近年育成粳稻新品种/系的稻瘟病抗性基因及穗颈瘟抗性分析[J]. 中国水稻科学, 2020, 34(5): 413-424. [12] 周坤能, 张彩娟, 夏加发, 等. 长江中下游地区粳稻稻瘟病基因型与苗瘟抗性分析[J]. 核农学报, 2022, 36(10): 1920-1928. doi: 10.11869/j.issn.100-8551.2022.10.1920 [13] 陈晴晴, 杨雪, 张爱芳. 长江中下游区试水稻品种稻瘟病抗性评价及抗性基因检测[J]. 南方农业学报, 2022, 53(1): 21-28. doi: 10.3969/j.issn.2095-1191.2022.01.003 [14] 王晓玲, 吴婷, 唐书升, 等. 82份籼粳稻骨干亲本抗稻瘟病基因的分子检测[J]. 热带作物学报, 2021, 42(5): 1199-1208. doi: 10.3969/j.issn.1000-2561.2021.05.001 [15] 潘争艳, 邱福林, 吕桂兰, 等. 辽宁省粳稻品种稻瘟病抗性基因分析[J]. 中国水稻科学, 2019, 33(3): 241-248. doi: 10.16819/j.1001-7216.2019.8071 [16] YE S, DHILLON S, KE X, et al. An efficient procedure for genotyping single nucleotide polymorphisms[J]. Nucleic Acids Research, 2001, 29(17): e88. doi: 10.1093/nar/29.17.e88
[17] 中华人民共和国农业部. 水稻品种试验稻瘟病抗性鉴定与评价技术规程: NY/T 2646—2014[S]. 北京: 中国标准出版社, 2014. [18] 陆展华, 付魏魏, 刘维, 等. 广东省主栽水稻品种稻瘟病主效抗性基因的鉴定及分析[J]. 植物病理学报, 2020, 50(6): 711-722. doi: 10.13926/j.cnki.apps.000505 [19] INUKAI T, NELSON R J, ZEIGLER R S, et al. Allelism of blast resistance genes in near-isogenic lines of rice[J]. Phytopathology, 1994, 84(11): 1278-1283. doi: 10.1094/Phyto-84-1278
[20] DENG Y, ZHU X, SHEN Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety[J]. Theoretical and Applied Genetics, 2006, 113(4): 705-713. doi: 10.1007/s00122-006-0338-7
[21] 邹德堂, 姜思达, 赵宏伟, 等. 广谱抗性基因Pi9在黑龙江省水稻品种中的分布[J]. 东北农业大学学报, 2016, 47(7): 1-8. doi: 10.3969/j.issn.1005-9369.2016.07.001 [22] 汪文娟, 周继勇, 汪聪颖, 等. 八个抗稻瘟病基因在华南籼型杂交水稻中的分布[J]. 中国水稻科学, 2017, 31(3): 299-306. [23] TIAN D G, CHEN Z J, CHEN Z Q, et al. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars[J]. Rice, 2016, 9(1): 19. doi: 10.1186/s12284-016-0091-8
[24] ZHAI C, LIN F, DONG Z, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011, 189(1): 321-334. doi: 10.1111/j.1469-8137.2010.03462.x
[25] WANG L, XU X, LIN F, et al. Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus[J]. Phytopathology, 2009, 99: 900-905. doi: 10.1094/PHYTO-99-8-0900
[26] 于苗苗, 戴正元, 潘存红, 等. 广谱稻瘟病抗性基因Pigm和Pi2的抗谱差异及与Pi1的互作效应[J]. 作物学报, 2013, 39(11): 1927-1934. [27] 黎玲, 吕启明, 彭志荣, 等. 籼型水稻中稻瘟病抗性基因分布及抗性研究[J]. 杂交水稻, 2022, 37(1): 30-37. [28] 宛柏杰, 刘凯, 赵绍路, 等. 水稻抗稻瘟病基因Pi-ta、Pi-b、Pigm和Pi54在骨干亲本中的分布以及对穗颈瘟抗性的作用[J]. 西南农业学报, 2020, 33(1): 1-6. -
期刊类型引用(3)
1. 董超,董丽英,薛静,杨雅云,汤翠凤,阿新祥,张斐斐,杨勤忠,戴陆园. 云南三地布朗族聚集区地方稻种资源苗瘟抗性评价及抗性基因鉴定. 广东农业科学. 2025(01): 1-13 . 百度学术
2. 于雅洁,曹鹏辉,宋云生,陈飞,乔中英,董明辉,朱勇良,谢裕林,袁彩勇. 江苏太湖地区粳稻稻瘟病抗性基因(Pi2、Pita、Pib)的分布及抗病效应. 江苏农业学报. 2024(05): 769-776 . 百度学术
3. 范德佳,王汝琴,陈士强,何震天,张容,韩燕,王建华. 扬辐粳系列水稻新品系稻瘟病抗性基因与穗颈瘟抗性分析. 江苏农业科学. 2024(22): 128-132 . 百度学术
其他类型引用(0)