• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系

胡杰, 贡常委, 袁好, 蒲建, 王学贵

胡杰, 贡常委, 袁好, 等. 水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系[J]. 华南农业大学学报, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006
引用本文: 胡杰, 贡常委, 袁好, 等. 水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系[J]. 华南农业大学学报, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006
HU Jie, GONG Changwei, YUAN Hao, et al. Interspecific relationships between Rhopalosiphum rufiabdominalis and Sogatella furcifera mediated by rice secondary metabolites[J]. Journal of South China Agricultural University, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006
Citation: HU Jie, GONG Changwei, YUAN Hao, et al. Interspecific relationships between Rhopalosiphum rufiabdominalis and Sogatella furcifera mediated by rice secondary metabolites[J]. Journal of South China Agricultural University, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006

水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系

基金项目: 西南作物基因资源发掘与利用国家重点实验室“生物育种”揭榜挂帅项目(SKL-ZY202221)
详细信息
    作者简介:

    胡 杰,硕士研究生,主要从事植物保护研究,E-mail: hojay@stu.sicau.edu.cn

    通讯作者:

    王学贵,教授,博士,主要从事农药毒理学研究,E-mail: wangxuegui@sicau.edu.cn

  • 中图分类号: Q946.8

Interspecific relationships between Rhopalosiphum rufiabdominalis and Sogatella furcifera mediated by rice secondary metabolites

  • 摘要:
    目的 

    探究白背飞虱Sogatella furcifera与红腹缢管蚜Rhopalosiphum rufiabdominalis种间互作机制,以及2种昆虫互作过程中水稻次生代谢物质的作用。

    方法 

    将白背飞虱和红腹缢管蚜按不同比例混合饲养,待白背飞虱长至成虫后分组配对,分析白背飞虱总产卵量及日均产卵量;测定各处理的水稻草酸、黄酮及总酚含量,利用GC/MS仪器分析各处理水稻幼苗次生代谢物质成分的差异。

    结果 

    “15头蚜虫 + 5头白背飞虱”处理的白背飞虱总产卵量仅为131.67粒,与“20头白背飞虱”处理(214.60粒)差异显著,日均产卵量也呈现相同的规律;“15头蚜虫 + 5头白背飞虱”处理的水稻黄酮和总酚含量分别为1.98和63.71 mg/L,均显著高于其他处理。GC/MS分析表明,“15头蚜虫 + 5头白背飞虱”处理的水稻中丙丁酚相对含量高达75.78%,而其余处理的水稻中不存在此种酚类物质。

    结论 

    红腹缢管蚜可能是通过刺激水稻提高黄酮及总酚含量,进而抑制白背飞虱的生殖能力,其中丙丁酚可能在白背飞虱和红腹缢管蚜种间互作中起着关键作用。

    Abstract:
    Objective 

    To explore the interaction mechanism between species of Sogatella furcifera (white-backed planthopper) and Rhopalosiphum rufiabdominalis (aphid), and the role of secondary metabolites in rice during the interaction between the two insects.

    Method 

    S. furcifera and R. rufiabdominalis were mixed in different proportions, and the total egg production and average daily spawning of white-backed planthopper adults were analyzed after pairing. The contents of oxalic acid, flavones and total phenols of each treated rice seedlings were determined, and the differences in compositions of secondary metabolites were analyzed by GC/MS instrument.

    Result 

    The total egg production of white-backed planthoppers treated with “15 aphids + 5 white-backed planthoppers” was only 131.67 grains, which was significantly different from that of “20 white-backed planthoppers” (214.60 grains), and the average daily fecundity was the same. The contents of rice flavones and total phenols treated with “15 aphids + 5 white-backed planthoppers” were 1.98 and 63.71 mg/L, respectively, which were significantly higher than those of other treatments. GC/MS analysis showed that the relative content of probucol in rice treated with “15 aphids + 5 white-backed planthoppers” was as high as 75.78%, while this phenolic substance was not present in the rest of the treatments.

    Conclusion 

    R. rufiabdominalis may inhibit the reproductive ability of S. furcifera through stimulating rice to promote the content of flavones and total phenols. The probucol may play a key role in the interaction between S. furcifera and R. rufiabdominalis.

  • 图  1   各处理组白背飞虱的单雌总产卵量及日均产卵量

    T2:15头蚜虫 + 5头白背飞虱,T3:10头蚜虫 + 10头白背飞虱,T4:5头蚜虫 + 15头白背飞虱,T5:20头白背飞虱;图A中,柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

    Figure  1.   Total egg production and average daily spawning of white-backed planthopper in each treatment

    T2: 15 aphids + 5 white-backed planthoppers, T3: 10 aphids + 10 white-backed planthoppers, T4: 5 aphids + 15 white-backed planthoppers, T5: 20 white-backed planthoppers; In figure A, different lowercase letters above the bars indicate significant differences among treatments (P<0.05, Duncan’s method)

    图  2   各处理组水稻的草酸、黄酮和总酚含量

    T1:20头蚜虫,T2:15头蚜虫 + 5头白背飞虱,T3:10头蚜虫 + 10头白背飞虱,T4:5头蚜虫 + 15头白背飞虱,T5:20头白背飞虱,T6(CK):0头蚜虫 + 0头白背飞虱;各图中,柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

    Figure  2.   Contents of oxalic acid, flavones and total phenols in rice of each treatment

    T1: 20 aphids, T2: 15 aphids + 5 white-backed planthoppers, T3: 10 aphids + 10 white-backed planthoppers, T4: 5 aphids + 15 white-backed planthoppers, T5: 20 white-backed planthoppers, T6 (Control treatment): 0 aphid + 0 white-backed planthopper; In each figure, different lowercase letters above the bars indicate significant differences among treatments (P<0.05, Duncan’s method)

    表  1   各试验处理的白背飞虱和红腹缢管蚜初始数量

    Table  1   Initial number of white-backed planthopper and aphid in each experimental treatment

    处理
    Treatment
    蚜虫/头
    Aphid
    白背飞虱/头
    White-backed planthopper
    T1200
    T2155
    T31010
    T4515
    T5020
    T6(CK)00
    下载: 导出CSV

    表  2   各处理组水稻主要次生代谢物质成分及相对含量

    Table  2   The main secondary metabolite components and relative contents in rice of each treatment

    化合物名称
    Compound name
    分子式
    Molecular formula
    t保留/min
    Retention time
    相对含量1)/% Relative content
    T2T4T6
    2,3−二氢−3,5−二羟基−6−甲基−4H−吡喃−4−酮
    2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one
    C6H8O4 5.664 0.67 3.71 13.21
    萘 Naphthalene C10H8 5.931 0.41 0.95 2.82
    2,4−二甲基苯甲醛 2,4-Dimethyl-benzaldehyde C9H10O 6.662 1.53 8.38 3.45
    3−乙酰氧基−3−羟基丙酸甲酯
    3-Acetoxy-3-hydroxypropionic acid-methyl ester
    C6H10O5 7.800 0 0 6.39
    1−硝基−1−脱氧−d−甘油−l−甘露庚醇
    1-Nitro-1-deoxy-d-glycero-l-mannoheptitol
    C7H15NO8 8.943 0 0 1.87
    十二烷醛 Dodecanal C12H24O 11.407 0.08 1.07 1.70
    5−羟甲基糠醛 5-Hydroxymethylfurfural C6H6O3 12.881 0.35 0 16.67
    2,4−二叔丁基苯酚 2,4-Di-tert-butylphenol C14H22O 14.001 5.38 28.59 2.70
    7,9−二叔丁基−1−氧杂螺(4,5)癸−6,9−二烯−2,8−二酮
    7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione
    C17H24O3 22.629 2.79 15.95 2.23
    二苯基砜 Diphenyl sulfone C12H10O2S 23.036 4.21 28.02 23.68
    9−十八烯酰胺 (Z)-9-Octadecenamide C18H35NO 30.918 0 0.73 1.30
    β−谷甾醇 Beta-sitosterol C29H50O 33.250 0.24 0.74 1.33
    3−[(三甲基硅)氧基]麦角甾−7−烯
    3-[(Trimethylsilyl)oxy]ergost-7-ene
    C31H56OSi 35.274 0 0 0.98
    1,6−双[甲基(三甲基)硅氧基]己烷
    1,6-Bis[methyl (trimethylene) silyloxy]hexane
    C14H30O2Si2 36.375 0 0 0.92
    (1R,4R)−4−二丙基−1−甲基环己基−2−烯醇
    (1R,4R)-4-Lsopropyl-1-methylcyclohex-2-enol
    C10H18O 38.780 0 0 0.90
    丙丁酚 Probucol C31H48O2S2 38.935 75.78 0 0
    3−羟基−(3β,5α,14β,20β,22β,25R)−螺甾−8−烯−11−酮
    3-hydroxy-(3β,5α,14β,20β,22β,25R)-Spirost-8-en-11-one
    C27H40O4 38.941 0 0 1.05
    7−溴−8−氯−2−甲基十八烷
    7-Bromo-8-chloro-2-methyloctadecane
    C19H38BrCl 41.439 1.12 0 1.53
    其他 Other 7.44 11.86 17.27
     1) T2:15头蚜虫 + 5头白背飞虱;T4:5头蚜虫 + 15头白背飞虱;T6(CK): 0头蚜虫 + 0头白背飞虱
     1) T2: 15 aphids + 5 white-backed planthoppers; T4: 5 aphids + 15 white-backed planthoppers; T6 (Control treatment): 0 aphid + 0 white-backed planthopper
    下载: 导出CSV
  • [1] 陈堑. 麦长管蚜与禾谷缢管蚜种间竞争的研究[D]. 杨凌: 西北农林科技大学, 2010.
    [2] 邱良妙, 刘其全, 陈秀琴, 等. 六斑月瓢虫对草地贪夜蛾低龄幼虫的捕食作用[J]. 中国生物防治学报, 2023, 39(2): 471-477.
    [3] 张晓明, 徐海云, 杨念婉, 等. 两种蚜小蜂对烟粉虱MED隐种的田间笼罩控效评价[J]. 植物保护学报, 2018, 45(6): 1281-1288.
    [4]

    KAPLAN I, DENNO R F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory[J]. Ecology Letters, 2007, 10(10): 977-994. doi: 10.1111/j.1461-0248.2007.01093.x

    [5] 刘晓飞, 陈强, 叶辉. 桔小实蝇与番石榴实蝇幼虫的种间竞争研究[J]. 环境昆虫学报, 2014, 36(1): 33-38.
    [6] 禹云超, 郅军锐, 曾广, 等. 入侵种西花蓟马与其它昆虫的种间竞争[J]. 环境昆虫学报, 2020, 42(1): 94-100.
    [7]

    ANDERSON P, SADEK M M, WÄCKERS F L. Root herbivory affects oviposition and feeding behavior of a foliar herbivore[J]. Behavioral Ecology, 2011, 22(6): 1272-1277. doi: 10.1093/beheco/arr124

    [8] 李建领. 寄主植物介导的枸杞瘿螨和枸杞木虱种间互作关系研究[D]. 北京: 北京协和医学院, 2019.
    [9]

    ZHAO H P, ZHANG X Y, XUE M, et al. Feeding of whitefly on tobacco decreases aphid performance via increased salicylate signaling[J]. PLoS One, 2015, 10(9): e0138584. doi: 10.1371/journal.pone.0138584.

    [10] 陈华才. 挥发物在水稻−二化螟、稻纵卷叶螟−二化螟绒茧蜂、螟蛉绒茧蜂相互关系中的作用[D]. 杭州: 浙江大学, 2002.
    [11] 张茂新, 凌冰, 庞雄飞. 非嗜食植物中的昆虫产卵驱避物及其利用[J]. 昆虫天敌, 2003, 25(1): 28-36.
    [12] 张钰明. 三氟苯嘧啶介导的核受体USP过表达对白背飞虱生殖发育的影响[D]. 雅安: 四川农业大学, 2022.
    [13] 段立珍, 汪建飞, 赵建荣. 比色法测定菠菜中草酸含量的条件研究[J]. 安徽农业科学, 2007, 35(3): 632-633.
    [14] 李明阳, 姚宇波, 徐翔, 等. 几种水稻对褐飞虱的抗性鉴定及抗性相关次生物质分析[J]. 应用昆虫学报, 2020, 57(6): 1375-1384.
    [15] 蔡文国, 吴卫, 邵金凤, 等. Folin-Ciocalteu法测定鱼腥草多酚的含量[J]. 食品科学, 2010, 31(14): 201-204.
    [16]

    PENG L, ZHAO Y, WANG H Y, et al. Comparative metabolomics of the interaction between rice and the brown planthopper[J]. Metabolomics, 2016, 12(8): 28746-28764.

    [17]

    DENNO R F, MCCLURE M S, OTT J R. Interspecific interactions in phytophagous insects: Competition reexamined and resurrected[J]. Annual Review of Entomology, 1995, 40: 297-331. doi: 10.1146/annurev.en.40.010195.001501

    [18] 石永秀, 上官超智, 王婷婷, 等. 黑豆蚜与豌豆蚜的种间竞争及密度效应[J]. 应用昆虫学报, 2022, 59(4): 862-873.
    [19] 吴佳昊, 黄波, 王德辉, 等. 光肩星天牛与星天牛种间竞争行为研究[J]. 环境昆虫学报, 2022, 44(3): 651-657. doi: 10.3969/j.issn.1674-0858.2022.03.16
    [20] 张祥, 刘长仲, 宋维虎. 不同CO2浓度条件下两种色型豌豆蚜的种群密度效应[J]. 甘肃农业大学学报, 2019, 54(3): 78-83+92.
    [21] 王健立, 李洪刚, 马志国, 等. 西花蓟马与烟蓟马在紫甘蓝上的种间竞争[J]. 中国农业科学, 2011, 44(24): 5006-5012. doi: 10.3864/j.issn.0578-1752.2011.24.005
    [22] 闫文静, 王俊刚, 张玉栋, 等. 棉长管蚜和棉蚜对受蚜虫取食胁迫棉花植株的选择行为[J]. 新疆农业科学, 2019, 56(1): 52-60.
    [23]

    PAPADOPOULOU G V, DAM N M. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores[J]. Ecological Research, 2017, 32(1): 13-26. doi: 10.1007/s11284-016-1410-7

    [24]

    NGUYEN D, RIEU I, MARIANI C, et al. How plants handle multiple stresses: Hormonal interactions underlying responses to abiotic stress and insect herbivory[J]. Plant Molecular Biology, 2016, 91(6): 727-740. doi: 10.1007/s11103-016-0481-8

    [25] 纪祥龙, 刘长庆, 胡玲玲, 等. 桃蚜与萝卜蚜交互为害对寄主氮营养及蚜虫种间竞争的调节[J]. 中国农学通报, 2019, 35(4): 97-101.
    [26]

    SOLER R, BEZEMER T M, CORTESERO A M, et al. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid[J]. Oecologia, 2007, 152(2): 257-264. doi: 10.1007/s00442-006-0649-z

    [27] 马广民. 朱砂叶螨取食诱导的棉花防御反应及其对棉蚜发育的影响[D]. 北京: 中国农业大学, 2017.
    [28]

    WALLING L L. Avoiding effective defenses: Strategies employed by phloem-feeding insects[J]. Plant Physiology, 2008, 146(3): 859-866. doi: 10.1104/pp.107.113142

图(2)  /  表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  34
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-07-06
  • 刊出日期:  2023-09-09

目录

    /

    返回文章
    返回