• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究

谢文浩, 李成章, 俞瑜

谢文浩, 李成章, 俞瑜. 拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究[J]. 华南农业大学学报, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031
引用本文: 谢文浩, 李成章, 俞瑜. 拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究[J]. 华南农业大学学报, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031
XIE Wenhao, LI Chengzhang, YU Yu. Study of Arabidopsis H3K27 methyltransferase CLF responding to ambient temperature and involving in temperature morphogenesis[J]. Journal of South China Agricultural University, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031
Citation: XIE Wenhao, LI Chengzhang, YU Yu. Study of Arabidopsis H3K27 methyltransferase CLF responding to ambient temperature and involving in temperature morphogenesis[J]. Journal of South China Agricultural University, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031

拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究

基金项目: 国家自然科学基金(31930017)
详细信息
    作者简介:

    谢文浩,硕士研究生,主要从事植物表观遗传学研究,E-mail: 20210700089@fudan.edu.cn

    通讯作者:

    俞 瑜,副教授,博士,主要从事植物表观遗传学研究,E-mail: yuy@fudan.edu.cn

  • 中图分类号: Q522;Q945

Study of Arabidopsis H3K27 methyltransferase CLF responding to ambient temperature and involving in temperature morphogenesis

  • 摘要:
    目的 

    探索拟南芥H3K27甲基转移酶CURLY LEAF(CLF)在温度形态建成中的作用。

    方法 

    在不同温度条件(22和16 ℃)下,对拟南芥Arabidopsis野生型Col-0和突变体clf-29进行表型分析和转录组分析,筛选差异表达基因。

    结果 

    在不同温度条件下,clf-29表现出显著的表型差异,相较于22 ℃,16 ℃时clf-29和Col-0的表型差异更小。转录组分析发现CLF的缺失会导致大量基因表达差异,并将其分为4种类型(仅在Col-0显著上调、下调,仅在clf-29突变体显著上调、下调),包含96个温度响应基因。

    结论 

    拟南芥表观遗传调控因子CLF响应环境温度,并参与温度形态建成。

    Abstract:
    Objective 

    To explore the role of Arabidopsis H3K27 methyltransferase CURLY LEAF (CLF) in temperature morphogenesis.

    Method 

    The differentially expressed genes were screened by phenotypic analysis and transcriptome analysis of Arabidopsis wild type Col-0 and mutant clf-29 under different temperatures of 22 and 16 ℃.

    Result 

    clf-29 showed significant phenotypic differences under different temperatures, there was less difference between clf-29 and Col-0 at 16 ℃ than at 22 ℃. Transcriptome analysis found that deletion of CLF led to expression changes of a large number of genes, which were divided into four types (significantly up-regulated/down-regulated only in Col-0, significantly up-regulated/down-regulated only in clf-29 mutant), containing 96 temperature responsive genes.

    Conclusion 

    Arabidopsis epigenetic regulator CLF responds to ambient temperature and is involved in temperature morphogenesis.

  • 图  1   Col-0和clf-29基因型鉴定

    LP:左侧基因组引物,RP:右侧基因组引物;BP:T-DNA边界引物

    Figure  1.   Genotype identification of Col-0 and clf-29

    LP: Left genomic primer, RP: Right genomic primer, BP: T-DNA border primer

    图  2   Col-0和clf-29植株(a、b)和叶片(c、d)表型展示

    Figure  2.   Phenotypic display of plant (a, b) and leaf (c, d) for Col-0 and clf-29

    图  3   Col-0和clf-29在不同温度条件的表型统计

    图a统计的叶片数量为3片,图b、c统计的植株数量为25株;“*”和“***”分别表示Col-0和clf-29P < 0.05和P < 0.001水平差异显著(t检验)

    Figure  3.   Phenotypic statistics of Col-0 and clf-29 at different temperatures

    The number of leaves counted in figure a is 3, the number of plants counted in figure b, c is 25; “*” and “***” indicate significant differences at P < 0.05 and P < 0.001 levels between Col-0 and clf-29 respectively (t test)

    图  4   RNA-seq数据的准确性(a)和相关性分析(b)

    Figure  4.   Accuracy (a) and correlation analyses (b) of RNA-seq data

    图  5   不同温度条件下Col-0和clf-29的差异表达基因

    Figure  5.   Differentially expressed genes of Col-0 and clf-29 at different temperatures

    图  6   相比于22 ℃,16 ℃条件下Col-0和clf-29的差异上调(a)和差异下调(b)基因的交集

    Figure  6.   Intersection of differentially up-regulated (a) and down-regualted (b) genes at 16 ℃ compared to 22 ℃

    图  7   相比于22 ℃,16 ℃条件下Col-0和clf-29差异表达基因的相关性

    Figure  7.   Correlation of differentially expressed genes between Col-0 and clf-29 at 16 ℃ compared to 22 ℃

    图  8   相比于22 ℃,16 ℃条件下Col-0和clf-29各自差异表达基因的GO分析

    Figure  8.   GO analyses of differentially expressed genes in Col-0 and clf-29 respectively at 16 ℃ compared to 22 ℃

    图  9   相比于22 ℃,16 ℃条件下Col-0和clf-29各自温度响应基因的热图

    Figure  9.   Heatmap of temperature-responsive genes in Col-0 and clf-29 respectively at 16 ℃ compared to 22 ℃

    图  10   特定温度响应基因的RT-qPCR验证

    Figure  10.   RT-qPCR verifiction of specific temperature-responsive genes

    表  1   本研究用到的引物

    Table  1   Primers used in this study

    用途
    Usage
    名称
    Name
    序列
    Sequence
    基因分型
    Genotyping
    clf-29-BP 5′-ATTTTGCCGATTTCGGAAC-3′
    clf-29-LP 5′-AAGAAACTTGCTAGTTCCGCC-3′
    clf-29-RP 5′-GAGGCATTGACTTTGATTTGC-3′
    RT-qPCR SUS1-F 5′-GGCTAGGCTTGATCGTGTCA-3′
    SUS1-R 5′-GATCCACCTGAACTGACCGT-3′
    LHCA1-F 5′-CAGTCCCGTGGGGTACTTTG-3′
    LHCA1-R 5′-GCCGCCCGTTCTTGATCTC-3′
    B1L-F 5′-AATCTCCGATGGACCGTTTGA-3′
    B1L-R 5′-AGAGCTTTCTTAGCTCGCCG-3′
    DIN10-F 5′-CGCTTTCTGATCTTGGAAATCGC-3′
    DIN10-R 5′-ACACCGGTTAGAATCGTCCG-3′
    ACTIN 2-F 5′-AGTGTTAGCTGCTGCCGCTGT-3′
    ACTIN 2-R 5′-ACCAGCAAAACCAGCCTTCACCA-3′
    下载: 导出CSV

    表  2   RNA-seq数据统计1)

    Table  2   Statistical analyses of RNA-seq data

    θ/ ℃样品
    Sample
    NrawNtrimηtrim/%Nmapηmap/%Nfilterηfilter/%
    22Col-0-137 244 77837 224 20499.9436 546 72398.1832 101 10487.84
    Col-0-222 235 62422 206 54699.8721 582 54297.1919 117 94388.58
    Col-0-333 187 89233 167 45099.9432 477 56797.9222 820 84970.27
    clf-29-13495652834 928 74499.9234 052 03397.4930 609 31289.89
    clf-29-232 170 57032 138 51299.9031 122 93596.8427 113 26287.12
    clf-29-333 342 87433 311 22299.9132 488 43597.5329 058 94789.44
    16Col-0-122 773 10622 750 52499.9022 163 56097.4220 064 34390.53
    Col-0-228 556 57628 521 01299.8827 642 56596.9224 617 36689.06
    Col-0-329 554 42629 506 42499.8428 694 99797.2526 892 27493.72
    clf-29-131 924 45631 886 89699.8830 662 43996.1628 160 28191.84
    clf-29-234 539 69634 510 88699.9233 692 97897.6329 642 35387.98
    clf-29-330 517 27830 473 50499.8629 717 76197.5225 571 99886.05
     1) Nraw:原始测序的reads数目;Ntrimηtrim:除去低质量碱基后的reads数目和对应的比例;Nmapηmap:比对到拟南芥基因组的reads数目和对应的比例;Nfilterηfilter:比对到拟南芥染色质上且高比对质量的reads数目和对应的比例
     1) Nraw: The number of raw reads; Ntrim, ηtrim: The number and corresponding proportion of reads after removing the low quality bases; Nmap, ηmap: The number and corresponding proportion of reads that aligned on Arabidopsi genome; Nfilter, ηfilter: The number and corresponding proportion of reads that aligned on Arabidopsi with high quality
    下载: 导出CSV
  • [1]

    CHANG Y N, ZHU C, JIANG J, et al. Epigenetic regulation in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 2020, 62(5): 563-580. doi: 10.1111/jipb.12901

    [2]

    LAMERS J, VAN DER MEER T, TESTERINK C. How plants sense and respond to stressful environments[J]. Plant Physiology, 2020, 182(4): 1624-1635. doi: 10.1104/pp.19.01464

    [3]

    ASHAPKIN V V, KUTUEVA L I, ALEKSANDRUSHKINA N I, et al. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses[J]. International Journal of Molecular Sciences, 2020, 21(20): 7457. doi: 10.3390/ijms21207457.

    [4]

    GALLUSCI P, DAI Z, GENARD M, et al. Epigenetics for plant improvement: Current knowledge and modeling avenues[J]. Trends in Plant Science, 2017, 22(7): 610-623. doi: 10.1016/j.tplants.2017.04.009

    [5]

    KASSIS J A, KENNISON J A, TAMKUN J W. Polycomb and trithorax group genes in Drosophila[J]. Genetics, 2017, 206(4): 1699-1725. doi: 10.1534/genetics.115.185116

    [6]

    LEWIS E B. A gene complex controlling segmentation in Drosophila[J]. Nature, 1978, 276(5688): 565-570. doi: 10.1038/276565a0

    [7]

    SCHUETTENGRUBER B, GANAPATHI M, LEBLANC B, et al. Functional anatomy of Polycomb and trithorax chromatin landscapes in Drosophila embryos[J]. PLoS Biology, 2009, 7(1): 146-163.

    [8]

    SPARMANN A, VAN LOHUIZEN M. Polycomb silencers control cell fate, development and cancer[J]. Nature Reviews Cancer, 2006, 6(11): 846-856. doi: 10.1038/nrc1991

    [9]

    PIEN S, GROSSNIKLAUS U. Polycomb group and trithorax group proteins in Arabidopsis[J]. Biochimica et Biophysica Acta: Gene Structure and Expression, 2007, 1769(5/6): 375-382.

    [10]

    GOODRICH J, PUANGSOMLEE P, MARTIN M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386(6620): 44-51. doi: 10.1038/386044a0

    [11]

    GROSSNIKLAUS U, VIELLE-CALZADA J P, HOEPPNER M A, et al. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis[J]. Science, 1998, 280(5362): 446-450. doi: 10.1126/science.280.5362.446

    [12]

    CHANVIVATTANA Y, BISHOPP A, SCHUBERT D, et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis[J]. Development, 2004, 131(21): 5263-5276. doi: 10.1242/dev.01400

    [13]

    XIAO J, WAGNER D. Polycomb repression in the regulation of growth and development in Arabidopsis[J]. Current Opinion in Plant Biology, 2015, 23: 15-24. doi: 10.1016/j.pbi.2014.10.003

    [14]

    SHU J, CHEN C, THAPA R K, et al. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings[J]. Plant Direct, 2019, 3(1): 100. doi: 10.1002/pld3.100.

    [15]

    KIM G T, TSUKAYA H, UCHIMIYA H. The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana[J]. Planta, 1998, 206(2): 175-183. doi: 10.1007/s004250050389

    [16]

    LAFOS M, KROLL P, HOHENSTATT M L, et al. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation[J]. PLoS Genetics, 2011, 7(4): e1002040. doi: 10.1371/journal.pgen.1002040

    [17]

    LIU J, DENG S, WANG H, et al. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis[J]. Plant Physiology, 2016, 171(1): 424-436. doi: 10.1104/pp.15.01335

    [18]

    GU X, XU T, HE Y. A histone H3 lysine-27 methyltransferase complex represses lateral root formation in Arabidopsis thaliana[J]. Molecular Plant, 2014, 7(6): 977-988. doi: 10.1093/mp/ssu035

    [19]

    DING Y, SHI Y, YANG S. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4): 544-564. doi: 10.1016/j.molp.2020.02.004

    [20]

    KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010, 140(1): 136-147. doi: 10.1016/j.cell.2009.11.006

    [21]

    GIL K E, PARK C M. Thermal adaptation and plasticity of the plant circadian clock[J]. New Phytologist, 2019, 221(3): 1215-1229. doi: 10.1111/nph.15518

    [22]

    QUINT M, DELKER C, FRANKLIN K A, et al. Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016, 2(1): 15190. doi: 10.1038/NPLANTS.2015.190.

    [23]

    BLAZQUEZ M A, AHN J H, WEIGEL D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genetics, 2003, 33(2): 168-171. doi: 10.1038/ng1085

    [24]

    MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10-12. doi: 10.14806/ej.17.1.200

    [25]

    KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317

    [26]

    LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352

    [27]

    LIAO Y, SMYTH G K, SHI W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930. doi: 10.1093/bioinformatics/btt656

    [28]

    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.

    [29]

    RAMIREZ F, RYAN D P, GRUNING B, et al. DeepTools2: A next generation web server for deep-sequencing data analysis[J]. Nucleic Acids Research, 2016, 44(W1): W160-W165. doi: 10.1093/nar/gkw257

    [30]

    THORVALDSDOTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration[J]. Briefings in Bioinformatics, 2013, 14(2): 178-192. doi: 10.1093/bib/bbs017

    [31]

    YU G, WANG L G, HAN Y, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS: A Journal of Integrative Biology, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118

    [32]

    JUNG C G, HWANG S G, PARK Y C, et al. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations[J]. Journal of Plant Physiology, 2015, 176: 138-146. doi: 10.1016/j.jplph.2015.01.001

    [33]

    CHEN T, CHEN J H, ZHANG W, et al. BYPASS1-LIKE, a DUF793 family protein, participates in freezing tolerance via the CBF pathway in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 807. doi: 10.3389/fpls.2019.00807.

    [34]

    BOUREAU L, HOW-KIT A, TEYSSIER E, et al. A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants[J]. Plant Molecular Biology, 2016, 90(4/5): 485-501.

    [35]

    LUO M, PLATTEN D, CHAUDHURY A, et al. Expression, imprinting, and evolution of rice homologs of the polycomb group genes[J]. Molecular Plant, 2009, 2(4): 711-723. doi: 10.1093/mp/ssp036

    [36]

    KWON C S, LEE D, CHOI G, et al. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis[J]. Plant Journal, 2009, 60(1): 112-121. doi: 10.1111/j.1365-313X.2009.03938.x

    [37]

    RAMAKRISHNAN M, ZHANG Z, MULLASSERI S, et al. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants[J]. Frontiers in Plant Science, 2022, 13: 1075279. doi: 10.3389/fpls.2022.1075279.

    [38]

    TIAN Y, ZHENG H, ZHANG F, et al. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR[J]. Science Advances, 2019, 5(4): eaau7246. doi: 10.1126/sciadv.aau7246

    [39]

    YANG H, BERRY S, OLSSON T S G, et al. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis[J]. Science, 2017, 357(6356): 1142-1145. doi: 10.1126/science.aan1121

图(10)  /  表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  20
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-08-10
  • 刊出日期:  2023-09-09

目录

    /

    返回文章
    返回