Effects of exogenous melatonin on seedling growth and physiological characteristics of soybean under copper stress
-
摘要:目的
研究在铜(Cu)胁迫下,褪黑素对大豆Glycine max (Linn.) Merr.生理特性的影响,为缓解重金属胁迫提供一定的参考。
方法采用盆栽试验,选用Cu敏感品种‘桂早1号’和耐Cu品种‘巴西13’,在0.5 mmol·L−1 Cu胁迫下,施用100 μmol·L−1褪黑素,探究褪黑素对大豆生理指标(根长、株高、鲜质量、叶绿素相对含量和Cu含量),超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,丙二醛(MDA)、可溶性糖和可溶性蛋白含量的影响。
结果Cu胁迫下喷施100 μmol·L−1褪黑素显著提高了2个大豆品种的根长、株高、鲜质量和叶绿素相对含量。Cu胁迫下施用褪黑素显著降低2个品种地上部、地下部Cu含量,‘桂早1号’降低25.01%、18.40%,‘巴西13’降低26.84%、20.28%。Cu胁迫下施用褪黑素,‘桂早1号’的地上部POD活性和‘巴西13’的地下部CAT活性显著提高,分别为56.84%和48.35%;‘桂早1号’和‘巴西13’地上部SOD活性分别显著提高19.07%和7.30%;地上部MDA含量分别显著减少8.05%和26.56%。单施褪黑素和Cu胁迫下施用褪黑素对2个品种可溶性蛋白含量无显著影响;而Cu胁迫下施用褪黑素,‘桂早1号’和‘巴西13’地上部可溶性糖含量分别显著提高149.70%和58.75%。
结论适宜浓度的褪黑素可以通过提高植株抗氧化酶活性,抑制膜脂氧化,减少对Cu的吸收和增加渗透调节物质等方式缓解Cu胁迫对大豆生长发育的影响。
Abstract:ObjectiveThe effects of melatonin on the physiological properties of soybean (Glycine max (Linn.) Merr.) under copper (Cu) stress were investigated to provide some reference for the mitigation of heavy metal stress.
MethodIn a pot experiment, the Cu-sensitive variety ‘GuiZao 1’ and the Cu-tolerant variety ‘Brazil 13’ were selected and applied with 100 μmol·L−1 melatonin under 0.5 mmol·L−1 Cu stress to explore the effects of melatonin on soybean physiological indicators (root length, plant height, fresh weight, relative chlorophyll content and Cu content), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activities, malondialdehyde (MDA), soluble sugar and soluble protein contents.
ResultApplication of 100 μmol·L−1 melatonin under Cu stress increased the root length, plant height, fresh weight and relative chlorophyll content of both soybean varieties. The Cu contents in shoots and roots of both varieties were significantly reduced by melatonin treatment under Cu stress by 25.01% and 18.40% (‘GuiZao 1’), 26.84% and 20.28% (‘Brazil 13’), respectively. By applying melatonin under Cu stress, ‘GuiZao 1’ had a significant increase of POD activity in shoots by 48.35%, and ‘Brazil 13’ had a significant increase of CAT activity in roots by 56.84%; ‘GuiZao 1’ and ‘Brazil 13’ had significantly higher SOD activities in shoots by 19.07% and 7.30%, respectively; MDA content in shoots was significantly reduced by 8.05% and 26.56%. In the single application or mixed application under Cu stress, melatonin had no significant effect on the soluble protein contents of the two varieties. The amounts of soluble sugar in shoots of ‘GuiZao 1’ and ‘Brazil 13’ increased by 149.70% and 58.75% in the mixed application treatment under Cu stress.
ConclusionThe appropriate concentrations of melatonin can mitigate the effects with Cu stress on soybean growth and development by improving antioxidant enzyme activity, inhibiting membrane lipid oxidation, reducing Cu uptake and increasing osmoregulatory substances.
-
-
图 1 褪黑素对Cu胁迫下大豆生长的影响
CK:对照,MT:单施褪黑素,Cu:Cu胁迫,Cu+MT:Cu胁迫下施用褪黑素;各小图中,相同品种柱子上方的不同小写字母表示差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示在P < 0.05和P < 0.01水平差异显著(t检验)
Figure 1. Effect of melatonin on soybean growth under Cu stress
CK: Control, MT: Melatonin alone, Cu: Cu stress, Cu+MT: Applying melatonin under Cu stress; In each figure, different lowercase letters above the columns of the same variety indicate significant differences (P < 0.05, Duncan’s method); “*” and “**” indicate significant differences at P < 0.05 and P < 0.01 respectively (t test)
图 2 褪黑素对Cu胁迫下大豆叶绿素相对含量及地上部、地下部Cu含量的影响
CK:对照,MT:单施褪黑素,Cu:Cu胁迫,Cu+MT:Cu胁迫下施用褪黑素;各小图中,相同品种柱子上方的不同小写字母表示差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示在P < 0.05和P < 0.01水平差异显著(t检验)
Figure 2. Effect of melatonin on chlorophyll relative content, and Cu contents of shoot and root in soybean under Cu stress
CK:Cu, MT: Melatonin alone, Cu: Cu stress, Cu+MT: Applying melatonin under Cu stress; In each figure, different lowercase letters above the columns of the same variety indicate significant differences (P < 0.05, Duncan’s method); “*” and “**” indicate significant differences at P < 0.05 and P < 0.01 respectivel (t test)
图 3 褪黑素对Cu胁迫下大豆抗氧化酶活性和MDA含量的影响
CK:对照,MT:单施褪黑素,Cu:Cu胁迫,Cu+MT:Cu胁迫下施用褪黑素;各小图中,相同品种柱子上方的不同小写字母表示差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示在P < 0.05和P < 0.01水平差异显著(t检验)
Figure 3. Effects of melatonin on antioxidant enzyme activity and MDA content in soybean under Cu stress
CK: Control, MT: Melatonin alone, Cu: Cu stress, Cu+MT: Applying melatonin under Cu stress; In each figure, different lowercase letters above the columns of the same variety indicate significant differences (P < 0.05, Duncan’s method); “*” and “**” indicate significant differences at P < 0.05 and P < 0.01 respectively (t test)
图 4 褪黑素对Cu胁迫下渗透调节物质含量的影响
CK:对照,MT:单施褪黑素,Cu:Cu胁迫,Cu+MT:Cu胁迫下施用褪黑素;各小图中,相同品种柱子上方的不同小写字母,表示差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示在P < 0.05和P < 0.01水平差异显著(t检验)
Figure 4. Effect of melatonin on osmotic adjustment substance content under Cu stress
CK: Control, MT: Melatonin alone, Cu: Cu stress, Cu+MT: Applying melatonin under Cu stress; In each figure, different lowercase letters above the columns of the same variety indicate significant differences (P < 0.05, Duncan’s method); “*” and “**” indicate significant differences at P < 0.05 and P < 0.01 respectivel (t test)
-
[1] SCHWALBERT R, STEFANELLO L O, SCHWALBERT R A, et al. Soil tillage affects soybean growth and promotes heavy metal accumulation in seeds[J]. Ecotoxicology and Environmental Safety, 2021, 216: 112191. doi: 10.1016/j.ecoenv.2021.112191.
[2] YRUELA I. Copper in plants: Acquisition, transport and interactions[J]. Functional Plant Biology, 2009, 36(5): 409-430. doi: 10.1071/FP08288
[3] REHMAN M, LIU L, WANG Q, et al. Copper environmental toxicology, recent advances, and future outlook: A review[J]. Environmental Science and Pollution Research International, 2019, 26(18): 18003-18016. doi: 10.1007/s11356-019-05073-6
[4] GOMES D G, DEBIASI T V, PELEGRINO M T, et al. Soil treatment with nitric oxide-releasing chitosan nanoparticles protects the root system and promotes the growth of soybean plants under copper stress[J]. Plants, 2022, 11(23): 3245. doi: 10.3390/plants11233245.
[5] 段文静, 孟妍君, 江丹, 等. 外源褪黑素对盐胁迫下棉花幼苗形态及抗氧化系统的影响[J]. 中国生态农业学报(中英文), 2022, 30(1): 92-104. doi: 10.12357/cjea.20210411 [6] ACUÑA-CASTROVIEJO D, MARTÍN M, MACÍAS M, et al. Melatonin, mitochondria, and cellular bioenergetics[J]. Journal of Pineal Research, 2001, 30(2): 65-74. doi: 10.1034/j.1600-079X.2001.300201.x
[7] GAO Y, WANG Y, QIAN J, et al. Melatonin enhances the cadmium tolerance of mushrooms through antioxidant-related metabolites and enzymes[J]. Food Chemistry, 2020, 330: 127263. doi: 10.1016/j.foodchem.2020.127263.
[8] SHARIF R, XIE C, ZHANG H, et al. Melatonin and its effects on plant systems[J]. Molecules, 2018, 23(9): 2352. doi: 10.3390/molecules23092352.
[9] GALANO A, TAN D X, REITER R J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK[J]. Journal of Pineal Research, 2013, 54(3): 245-257. doi: 10.1111/jpi.12010
[10] 杜昕, 李博, 毛鲁枭, 等. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022(1): 174-178. [11] JAHAN M S, SHU S, WANG Y, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biology, 2019, 19(1): 414. doi: 10.1186/s12870-019-1992-7.
[12] TURK H, ERDAL S, GENISEL M, et al. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings[J]. Plant Growth Regulation, 2014, 74(2): 139-152. doi: 10.1007/s10725-014-9905-0
[13] 陈丽珊, 周红艳, 林伟伟. 外源褪黑素对盐胁迫下水稻苗期碳氮代谢的影响[J/OL]. 生态学杂志, 2022: 1-11. https://kns.cnki.net/kcms/detail/21.1148.Q.20220917.1053.004.html. [14] 张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. [15] WEI J, LIANG J, LIU D, et al. Melatonin-induced physiology and transcriptome changes in banana seedlings under salt stress conditions[J]. Frontiers in Plant Science, 2022, 13: 938262. doi: 10.3389/fpls.2022.938262.
[16] ZENG Q Y, YANG C Y, MA Q B, et al. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress[J]. BMC Plant Biology, 2012, 12: 182. doi: 10.1186/1471-2229-12-182.
[17] WEN K, LI X, HUANG R, et al. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.)[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113405. doi: 10.1016/j.ecoenv.2022.113405.
[18] 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006: 132-181. [19] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 142-218. [20] 熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003: 81-83. [21] 蔡琪琪, 王堽, 董寅壮, 等. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022(1): 130-136. doi: 10.16035/j.issn.1001-7283.2022.01.019 [22] ANDRADE F R, DA SILVA G N, GUIMARÃES K C, et al. Selenium protects rice plants from water deficit stress[J]. Ecotoxicology and Environmental Safety, 2018, 164: 562-570. doi: 10.1016/j.ecoenv.2018.08.022
[23] WU C, CAO S, XIE K, et al. Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure[J]. Postharvest Biology and Technology, 2021, 172: 111378. doi: 10.1016/j.postharvbio.2020.111378.
[24] CUI G, ZHAO X, LIU S, et al. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings[J]. Plant Physiology and Biochemistry, 2017, 118: 138-149. doi: 10.1016/j.plaphy.2017.06.014
[25] CORNEJO J, TAPIA J, GUERRA F, et al. Variation in copper accumulation at the tissue level of five hybrid poplars subjected to copper stress[J]. Water Air and Soil Pollution, 2017, 228(6): 212. doi: 10.1007/s11270-017-3384-7.
[26] JALMI S K, BHAGAT P K, VERMA D, et al. Traversing the links between heavy metal stress and plant signaling[J]. Frontiers in Plant Science, 2018, 9: 12. doi: 10.3389/fpls.2018.00012.
[27] CAO Y, QI C, LI S, et al. Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber[J]. Plant and Cell Physiology, 2019, 60(3): 562-574. doi: 10.1093/pcp/pcy226
[28] XIA H, SHEN Y, DENG H, et al. Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in ‘Summer Black’ grape[J]. Food Chemistry, 2021, 356: 129713. doi: 10.1016/j.foodchem.2021.129713.