• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

花生氮敏感品种及评价指标的筛选

高宇, 曾瑞儿, 姚苏哲, 王迎, 黄子珺, 李洁, 高恒宽, 刘仕元, 张慧, 陈婷婷, 张雷

高宇, 曾瑞儿, 姚苏哲, 等. 花生氮敏感品种及评价指标的筛选[J]. 华南农业大学学报, 2023, 44(5): 794-802. DOI: 10.7671/j.issn.1001-411X.202302002
引用本文: 高宇, 曾瑞儿, 姚苏哲, 等. 花生氮敏感品种及评价指标的筛选[J]. 华南农业大学学报, 2023, 44(5): 794-802. DOI: 10.7671/j.issn.1001-411X.202302002
GAO Yu, ZENG Ruier, YAO Suzhe, et al. Screening and evaluation indicators for peanut nitrogen-sensitive cultivars[J]. Journal of South China Agricultural University, 2023, 44(5): 794-802. DOI: 10.7671/j.issn.1001-411X.202302002
Citation: GAO Yu, ZENG Ruier, YAO Suzhe, et al. Screening and evaluation indicators for peanut nitrogen-sensitive cultivars[J]. Journal of South China Agricultural University, 2023, 44(5): 794-802. DOI: 10.7671/j.issn.1001-411X.202302002

花生氮敏感品种及评价指标的筛选

基金项目: 国家重点研发计划(2020YFD1000905);广东省花生大豆产业技术体系创新团队(2021KJ136-05);广东省植物分子育种重点实验室开放课题(GPKLPMB202203)
详细信息
    作者简介:

    高 宇,硕士研究生,主要从事花生生理生态研究,E-mail : hnnydx2021@stu.scau.edu.cn

    通讯作者:

    张 雷,副研究员,博士,主要从事花生种质资源利用及表型组学研究,E-mail : zhanglei@scau.edu.cn

  • 中图分类号: S502.4;S565.3

Screening and evaluation indicators for peanut nitrogen-sensitive cultivars

  • 摘要:
    目的 

    明确不同花生品种对氮素响应的特点。

    方法 

    本试验以来自全国各地的81份花生种质资源为材料,设置正常施氮与低氮胁迫2种大田试验处理,测定81份花生品种苗期的叶绿素含量及收获期的产量、干物质积累及农艺性状等19项指标。以测定的19项指标的氮响应系数为基础进行主成分分析,筛选出6个新的独立的综合指标,通过计算其隶属函数值与各综合指标权重得出花生氮敏感综合评价D值,通过聚类分析对花生品种进行分类。进一步分析不同类型花生品种的氮响应系数及指标间的相关性。

    结果 

    81份花生品种分为氮敏感型品种(13)、中间型品种(33)及氮不敏感型品种(35)。正常施氮处理下,氮不敏感型花生品种农艺性状的响应差异不显著,但氮敏感型和中间型花生品种产量及干物质积累的上升幅度显著高于氮不敏感型品种。不同性状的相关性分析表明,施氮主要通过影响花生干物质积累与分配及株型结构进而影响花生产量的形成。

    结论 

    花生苗期叶绿素含量、单株生产力与收获期干物质积累可作为花生氮敏感品种的筛选指标,研究结果可为花生氮高效品种的筛选与培育提供依据。

    Abstract:
    Objective 

    To characterize the response of different peanut cultivars to nitrogen.

    Method 

    A total of 81 peanut cultivars from all over China were used as materials, and two field treatments of normal nitrogen application and low nitrogen application were set up. Nineteen indexes, including chlorophyll content at the seedling stage as well as yield, dry matter accumulation and agronomic traits at the harvest stage, were measured in 81 peanut cultivars. The nitrogen response coefficients of the measured 19 indicators were used as the basis for principal component analysis, six new independent composite indicators were screened out, and the D values for comprehensive evaluation of peanut nitrogen sensitivity were obtained by calculating their affiliation function values and the weights of each composite indicator. The peanut cultivars were classified by cluster analysis. The correlations between nitrogen response coefficients and indicators of different types of peanut cultivars were further analyzed.

    Result 

    The 81 peanut cultivars were divided into nitrogen-sensitive (13), intermediate (33) and nitrogen-insensitive (35) cultivars. Under normal nitrogen application treatments, the response of nitrogen-insensitive peanut cultivars did not differ significantly in agronomic traits, but the increase in yield and dry matter accumulation of nitrogen-sensitive and intermediate peanut cultivars were significantly higher than those of nitrogen-insensitive cultivars. Correlation analysis of different traits showed that nitrogen application mainly affected peanut yield formation by influencing peanut dry matter accumulation and distribution and plant structure.

    Conclusion 

    Chlorophyll content at seedling stage, single plant productivity and dry matter accumulation at harvest stage can be used as screening indicators for peanut nitrogen-sensitive cultivars, and the results of the study can provide a basis for screening and breeding of nitrogen-efficient cultivars of peanut.

  • 图  1   施氮对不同氮敏感型花生品种农艺性状、产量及构成因素的影响

    不同小写字母表示组间氮响应系数在0.05水平差异显著;“*”表示氮肥处理间在0.05水平差异显著(LSD法)

    Figure  1.   Effect of nitrogen application on agronomic traits, yield and composition factors of peanut cultivars with different nitrogen sensitivities

    Different lowercase letters indicate significant differences in nitrogen response coefficient at 0.05 level among groups; “*” represents significant differences at 0.05 level between nitrogen application treatments (LSD method)

    图  2   施氮对不同氮敏感型花生品种干物质积累和苗期光合色素含量的影响

    不同小写字母表示组间氮响应系数在0.05水平差异显著;“*”表示氮肥处理间在0.05水平差异显著(LSD法)

    Figure  2.   Effect of nitrogen application on dry matter accumulation and seedling photosynthetic pigment contents of peanut cultivars with different nitrogen sensitivities

    Different lowercase letters indicate significant differences in nitrogen response coefficient at 0.05 level among groups; “*” represents significant differences at 0.05 level between nitrogen application treatments (LSD method)

    表  1   各综合指标的贡献率及特征向量1)

    Table  1   Contribution rate and eigenvector of each composite index

    指标 ItemC1C2C3C4C5C6
    叶绿素a含量 Chlorophyll a content −0.435 0.756 −0.295 −0.082 −0.069 0.040
    叶绿素b含量 Chlorophyll b content −0.404 0.705 −0.143 0.170 0.225 0.009
    总叶绿素含量 Total chlorophyll content −0.488 0.800 −0.277 −0.026 0.003 0.032
    类胡萝卜素含量 Carotenoid content −0.462 0.738 −0.307 −0.031 −0.004 −0.028
    百果质量 100-pod weight −0.056 0.427 0.704 −0.229 −0.350 0.101
    百仁质量 100-kernel weight −0.216 0.136 0.635 0.022 −0.042 0.299
    百果仁质量 100-fruit kernel weight −0.035 0.471 0.681 −0.258 −0.316 0.083
    单株果数 No. of fruits per plant 0.783 0.321 −0.125 −0.364 0.013 −0.034
    单株生产力 Yield per plant 0.848 0.398 0.023 −0.224 0.080 −0.046
    果干质量 Fruit dry weight 0.846 0.416 0.023 −0.206 0.092 −0.046
    根干质量 Root dry weight 0.367 0.002 −0.361 −0.099 −0.006 0.384
    茎干质量 Stem dry weight 0.449 0.161 0.004 0.684 −0.256 −0.170
    叶干质量 Leaf dry weight 0.105 −0.063 −0.143 0.327 −0.241 0.624
    总干质量 Total dry weight 0.636 0.431 0.046 0.460 −0.189 0.054
    主茎高 Main stem height −0.041 0.196 0.299 0.646 −0.090 −0.216
    主茎节数 Number of main stem nodes −0.096 0.225 0.454 0.063 0.573 0.057
    侧枝长 Lateral branch length 0.132 0.093 0.405 0.160 0.667 −0.142
    分枝数 Number of branches 0.317 0.498 −0.275 0.124 0.182 0.027
    主茎粗 Main stem diameter 0.079 −0.078 0.040 0.159 0.432 0.556
    特征值 Eigenvalue 3.791 3.678 2.349 1.666 1.455 1.063
    贡献率/% Contribution rate 19.955 19.358 12.361 8.767 7.656 5.596
    累计贡献率/% Cumulative contribution rate 19.955 39.313 51.674 60.442 68.098 73.694
     1) C1~C6分别为第1~6主成分
     1) C1−C6 are the first to sixth principal components, respectively
    下载: 导出CSV

    表  2   供试花生品种氮敏感等级及分类1)

    Table  2   Nitrogen sensitivity level and classification of peanut cultivars under test

    品种编号
    Culticar number
    氮敏感类型(等级)
    Nitrogen sensitivity type (Grade)
    u(X1)u(X2)
    HN (1,11,45,47,49,58,92,116,122,123,127,162,166) 氮敏感型(Ⅰ)
    Nitrogen-sensitive type
    0.519a 0.677a
    HN (2,4,7,9,16,43,53,55,61,62,69,80,84,86,88,90,91,93,102,110,
    115,128,130,133,134,135,147,148,152,153,158,160,164)
    中间型(Ⅱ)
    Intermediate type
    0.165b 0.369b
    HN (12,14,15,18,19,26,27,29,31,32,34,44,46,48,65,72,77,79,85,
    8798,104,106,113,114,118,121,125,132,136,143,144,151,161,165)
    氮不敏感型(Ⅲ)
    Nitrogen-insensitive type
    0.101c 0.216c
     1) 同列数据后的不同小写字母表示不同氮敏感型花生品种差异显著(P < 0.05,LSD法)
     1) Different lowercase letters of the same column indicate significant differences among peanut cultivars of different nitrogen-sensitive types (P < 0.05,LSD method)
    下载: 导出CSV

    表  4   不同花生品种各性状氮响应系数间的相关性矩阵1)

    Table  4   Correlation matrix between nitrogen response coefficients of different peanut cultivars for each trait

    项目 ItemX1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16X17X18X19
    X11.000
    X20.593**1.000
    X30.963**0.772**1.000
    X40.839**0.658**0.870**1.000
    X50.1720.1140.1760.111.000
    X60.0210.0590.0410.0460.440**1.000
    X70.190.1690.1980.1350.849**0.408**1.000
    X8−0.042−0.101−0.076−0.0760.048−0.1840.0901.000
    X9−0.039−0.103−0.083−0.0720.129−0.1350.1770.867**1.000
    X10−0.036−0.069−0.071−0.0630.132−0.1320.1810.865**0.998**1.000
    X11−0.031−0.097−0.06−0.078−0.185−0.225*−0.1220.285*0.243*0.244*1.000
    X12−0.062−0.063−0.085−0.103−0.027−0.010−0.0640.1350.258*0.270*0.0491.000
    X13−0.043−0.039−0.049−0.06−0.093−0.025−0.105−0.019−0.010−0.0130.1260.1091.000
    X140.0260.0610.015−0.0230.141−0.0310.1460.427**0.561**0.568**0.1950.693**0.231*1.000
    X150.0030.221*0.0610.080.1490.0740.177−0.171−0.041−0.027−0.1330.334**0.0140.268*1.000
    X160.0420.253*0.1040.0590.190.2110.207−0.0570.0310.041−0.118−0.141−0.0580.0780.1321.000
    X17−0.1110.077−0.08−0.1010.0480.1750.073−0.0080.1780.186−0.0860.071−0.1040.0510.1250.438**1.000
    X180.1670.353**0.226*0.277*−0.029−0.059−0.0180.348**0.353**0.377**0.1260.238*−0.0250.406**−0.044−0.0580.0781.000
    X19−0.089−0.002−0.084−0.127−0.0830.095−0.114−0.0320.0360.0430.065−0.0150.028−0.0020.0370.0820.0980.0911.000
     1) X1:叶绿素a含量;X2:叶绿素b含量;X3:总叶绿素含量;X4:类胡萝卜素含量;X5:百果质量;X6:百仁质量;X7:百果仁质量;X8:单株果数;X9:单株生产力;X10:果干质量;X11:根干质量;X12:茎干质量;X13:叶干质量;X14:总干质量;X15:主茎高;X16:主茎节数;X17:侧枝长;X18:分枝数;X19:主茎粗;“*”和“**”分别表示在0.05和0.01水平显著相关(Pearson法)
     1) X1: Chlorophyll a content; X2: Chlorophyll b content; X3: Total chlorophyll content; X4: Carotenoid content; X5: 100-fruit weight; X6: 100-kernel weight; X7: 100-fruit kernel weight; X8: No. of fruit per plant; X9: Yield per plant; X10: Fruit dry weight; X11: Root dry weight; X12: Stem dry weight; X13: Leaf dry weight; X14: Total dry weight; X15: Main stem height; X16: Number of main stem nodes; X17: Lateral branch length; X18: Number of branches; X19: Main stem diameter; "*" and "**" indicate significant differences at 0.05 and 0.01 levels respectively (Pearson method)
    下载: 导出CSV
  • [1] 戴良香, 张智猛, 张冠初, 等. 氮肥用量对花生氮素吸收与分配的影响[J]. 核农学报, 2020, 34(2): 370-375. doi: 10.11869/j.issn.100-8551.2020.02.0370
    [2] 王响玲, 宋柏权. 氮肥利用率的研究进展[J]. 中国农学通报, 2020, 36(5): 93-97.
    [3] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783-795.
    [4] 刘兆辉, 薄录吉, 李彦, 等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述[J]. 中国土壤与肥料, 2016(4): 1-8. doi: 10.11838/sfsc.20160401
    [5] 周伟, 吕腾飞, 杨志平, 等. 氮肥种类及运筹技术调控土壤氮素损失的研究进展[J]. 应用生态学报, 2016, 27(9): 3051-3058. doi: 10.13287/j.1001-9332.201609.022
    [6] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
    [7] 申丹丹, 牛轶男, 朱敏, 等. 氮、硫肥配施对稻茬麦氮素利用及籽粒产量和品质的影响[J]. 麦类作物学报, 2021, 42(2): 1-8.
    [8] 任科宇. 氮肥优化减施和有机肥替代下我国粮食作物的氮肥利用率[D]. 北京: 中国农业科学院, 2020.
    [9] 郑永美, 冯昊, 吴正锋, 等. 氮肥调控对土壤供氮特征及花生氮素吸收利用的影响[J]. 中国油料作物学报, 2016, 38(4): 481-486. doi: 10.7505/j.issn.1007-9084.2016.04.011
    [10] 孙虎, 李尚霞, 王月福, 等. 施氮量对不同花生品种积累氮素来源和产量的影响[J]. 植物营养与肥料学报, 2010, 16(1): 153-157.
    [11] 张翔, 张新友, 毛家伟, 等. 施氮水平对不同花生品种产量与品质的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1417-1423.
    [12] 刘颖, 张佳蕾, 李新国, 等. 豆科作物氮素高效利用机制研究进展[J]. 中国油料作物学报, 2022, 44(3): 476-482. doi: 10.19802/j.issn.1007-9084.2021123
    [13] 山东省农业科学院. 花生栽培观察记载技术规范: NY/T 2408—2013[S]. (2013-09-10)[2022-10-01]. 北京: 中华人民共和国农业农村部.
    [14] 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9): 1401-1408. doi: 10.13592/j.cnki.ppj.2018.0071
    [15]

    ZHANG Z, HU B, CHU C. Towards understanding the hierarchical nitrogen signalling network in plants[J]. Current Opinion Plant Biology, 2020, 55: 60-65. doi: 10.1016/j.pbi.2020.03.006

    [16] 王春晓, 凌飞, 鹿泽启, 等. 不同氮效率花生品种氮素累积与利用特征[J]. 中国生态农业学报(中英文), 2019, 27(11): 1706-1713.
    [17] 蒋春姬, 郭佩, 王晓光, 等. 花生氮高效品种资源的苗期筛选研究[J]. 花生学报, 2020, 49(3): 40-45. doi: 10.14001/j.issn.1002-4093.2020.03.006
    [18]

    NGUYEN H T T, VAN PHAM C, BERTIN P. The effect of nitrogen concentration on nitrogen use efficiency and related parameters in cultivated rices (Oryza sativa L. subsp. indica and japonica and O. glaberrima Steud. ) in hydroponics[J]. Euphytica, 2014, 198(1): 137-151. doi: 10.1007/s10681-014-1101-9

    [19]

    XIE X, LI X, ZEBARTH B J, et al. Rapid screening of potato cultivars tolerant to nitrogen deficiency using a hydroponic system[J]. American Journal of Potato Research, 2018, 95(2): 157-163. doi: 10.1007/s12230-017-9621-1

    [20] 苏继霞, 王开勇, 费聪, 等. 氮肥运筹对滴灌甜菜产量、氮素吸收和氮素平衡的影响[J]. 土壤通报, 2016, 47(6): 1404-1408. doi: 10.19336/j.cnki.trtb.2016.06.19
    [21] 武继承, 杨永辉, 康永亮, 等. 氮磷配施对玉米生长和养分利用的影响[J]. 河南农业科学, 2011, 40(10): 68-71. doi: 10.15933/j.cnki.1004-3268.2011.10.028
    [22] 陈杨, 徐孟泽, 王玉红, 等. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987. doi: 10.3864/j.issn.0578-1752.2022.15.009
    [23] 田艺心, 曹鹏鹏, 高凤菊, 等. 减氮施肥对间作玉米−大豆生长性状及经济效益的影响[J]. 山东农业科学, 2019, 51(11): 109-113.
    [24]

    KADER M A, JAHANGIR M M R, ISLAM M R, et al. Long-term conservation agriculture increases nitrogen use efficiency by crops, land equivalent ratio and soil carbon stock in a subtropical rice-based cropping system[J]. Field Crops Research, 2022, 287: 108636. doi: 10.1016/j.fcr.2022.108636.

    [25]

    BÜCHI L, CHARLES R, SCHNEIDER D, et al. Performance of eleven winter wheat varieties in a long term experiment on mineral nitrogen and organic fertilisation[J]. Field Crops Research, 2016, 191: 111-122. doi: 10.1016/j.fcr.2016.02.022

    [26]

    SU W, KAMRAN M, XIE J, et al. Shoot and root traits of summer maize hybrid varieties with higher grain yields and higher nitrogen use efficiency at low nitrogen application rates[J]. PeerJ, 2019, 7: e7294. doi: 10.7717/peerj.7294.

    [27] 程红, 郑顺林, 马海艳, 等. 马铃薯氮高效基因型品种筛选及指标评价[J]. 西南农业学报, 2019, 32(10): 2292-2298. doi: 10.16213/j.cnki.scjas.2019.10.006
    [28] 王准, 张恒恒, 董强, 等. 棉花耐低氮和氮敏感种质筛选及验证[J]. 棉花学报, 2020, 32(6): 538-551. doi: 10.11963/1002-7807.wzsmz.20201023
图(2)  /  表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  9
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-01
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-07-06
  • 刊出日期:  2023-09-09

目录

    /

    返回文章
    返回