• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

细菌3–酮脂酰ACP还原酶的研究现状与展望

王海洪, 胡喆

王海洪, 胡喆. 细菌3–酮脂酰ACP还原酶的研究现状与展望[J]. 华南农业大学学报, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
引用本文: 王海洪, 胡喆. 细菌3–酮脂酰ACP还原酶的研究现状与展望[J]. 华南农业大学学报, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
WANG Haihong, HU Zhe. Research status and prospect on bacterial 3-oxoacyl-ACP-reductase[J]. Journal of South China Agricultural University, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
Citation: WANG Haihong, HU Zhe. Research status and prospect on bacterial 3-oxoacyl-ACP-reductase[J]. Journal of South China Agricultural University, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055

细菌3–酮脂酰ACP还原酶的研究现状与展望

基金项目: 国家自然科学基金(31671987,31972232);粤港澳大湾区国际科技创新中心建设–国际科学研究合作项目(2022309042)
详细信息
    作者简介:

    王海洪,教授,博士,主要从事细菌代谢研究,E-mail: wanghh36@scau.edu.cn
    王海洪,教授,华南农业大学生命科学学院副院长,广东省农业生物蛋白质功能与调控重点实验室副主任。长期从事细菌代谢研究,主要研究方向包括:细菌功能基因组学、细菌脂肪酸合成多样性和脂肪酸合成代谢调控机理、细菌生理生化、革兰阴性细菌群体感应与脂肪酸合成代谢关系等。主持国家重点基础研究发展计划(973)子课题、国家自然科学基金、教育部高等学校博士学科点专项科研基金、广东省自然科学基金等项目。近年来以通信作者在《mBio》《Molecular Plant Pathology》《Journal of Biological Chemistry》《Frontiers in Microbiology》《Molecular Plant-Microbe Interactions》《Applied and Environmental Microbiology》《BMC Microbiology》等学术刊物上发表论文40余篇

  • 中图分类号: Q933

Research status and prospect on bacterial 3-oxoacyl-ACP-reductase

  • 摘要:

    3–酮脂酰ACP还原酶属于短链醇脱氢酶/还原酶(SDR)超家族蛋白,参与细菌脂肪酸及相关物质合成,负责催化3–酮脂酰ACP还原为3–羟脂酰ACP。3–酮脂酰ACP还原酶在细菌中广泛存在,且氨基酸序列较为保守,然而其生物学功能却展现出多样性。本文对近年来细菌3–酮脂酰ACP还原酶的结构特性、生物学功能和抑制剂等方面的研究进展进行综述,为加深对3–酮脂酰ACP还原酶的理解和抗菌药物的开发提供有益的借鉴。

    Abstract:

    3-oxoacyl-ACP-reductase, a member of short chain dehydrogenase/reductase(SDR) super family, participates in the biothsythesis of bacterial fatty acid and derivatives by catalyzing the reduction of 3-oxoacyl-ACP to 3-hydroxyacyl-ACP. 3-oxoacyl-ACP-reductase is ubiquitously exsit in bacterial and highly conversed in amino acid sequence, however, it has diverse biological functions. In this review, we summerize the advance of structures, biological functions and inhibitors of 3-oxoacyl-ACP-reductase in recent years. This paper will provide useful references for further understanding of 3-oxoacyl-ACP-reductase and antibacterial drug design.

  • 图  1   细菌脂肪酸合成途径(A)与OAR催化反应机制(B)

    Figure  1.   The pathway of fatty acid biosynthesis in bacterial (A) and the reduction of 3-oxoacyl-ACP catalyzed by 3-oxoacyl-ACP reductase (B)

    图  2   不同细菌中的脂肪酸合成基因簇与OAR编码基因

    Figure  2.   The fatty acid biosynthesis gene cluster and gene enconding 3-oxoacyl-ACP reductase in different bacteria

    图  3   大肠埃希菌FabG的单体(A)和四聚体(B)晶体结构

    Figure  3.   The crystal structures of Escherichia coli FabG monomer (A) and tetramer (B)

    图  4   大肠埃希菌FabG假定催化机制(A)与突变体蛋白重建脂肪酸合成反应(B)

    Figure  4.   The postulated catalytic mechanism of Escherichia coli FabG (A) and reconstruction of fatty acid by mutant protein (B)

    图  5   苜蓿中华根瘤菌NodG具有OAR活性并参与苜蓿结瘤

    A:苜蓿根瘤菌FabG与NodG具有OAR活性;1:C8:0-ACP,2:EcFabG,3:苜蓿根瘤菌FabG,4:苜蓿根瘤菌NodG,5:不添加FabG蛋白,6:C8:0-ACP。B:NodG相关菌株结瘤效率;S. meliloti 1021/pSRK-Gm:野生型菌株携带空质粒,LF1:苜蓿根瘤菌nodG突变菌株,LF2:苜蓿根瘤菌nodG/fabG双突变菌株携带苜蓿根瘤菌nodG质粒,LF3:苜蓿根瘤菌nodG/fabG双突变菌株携带苜蓿根瘤菌fabG质粒, “*”“**”分别表示0.05和0.01水平差异显著[43],每个试验有8个重复

    Figure  5.   The Sinorhizobium meliloti NodG maintains OAR activity and involves in alfalfa nodulation

    A: Sinorhizobium meliloti FabG and NodG maintain the OAR activity; 1: C8:0-ACP, 2: Product of EcFabG, 3: Product of SmFabG, 4: Product of SmNodG, 5: No FabG addition, 6: C8:0-ACP. B: Nodulation efficiency of Sinorhizobium meliloti mutant strains; S. meliloti 1021/pSRK-Gm: Wild type strain carrying plasmid pSRK-Gm, LF1: Sinorhizobium meliloti nodG mutant strain, LF2: Sinorhizobium meliloti nodG/fabG double mutant strain carrying SmnodG ecoding plasmid, LF3: Sinorhizobium meliloti nodG/fabG double mutant strain carrying SmfabG ecoding plasmid, “*” and “**”indicate significant differences at levels of 0.05 and 0.01, respectively, Every experiment has eight replicates

    图  6   XccfabG2互补OAR突变菌株及参与Xcc DSF类信号分子合成

    A:XccfabG2互补大肠埃希菌fabG温度敏感突变菌株CL104;EcfabG:质粒携带有大肠埃希菌fabG基因,Vector:空质粒载体,fabG2:质粒携带有XccfabG2基因,AasS:质粒携带有哈氏弧菌aasS基因,AasS+ fabG:质粒携带有哈氏弧菌aasSXccfabG2基因。B:XccfabG2互补XccfabG1突变菌株;WT:Xcc野生型,∆fabG1+pfabG2XccfabG1突变菌株携带有XccfabG2表达质粒。C: XccfabG2突变菌株的DSF类信号分子产量;DSF:11−甲基−顺−2−月桂酰烯酸,BDSF:顺−2−月桂酰烯酸,空柱:Xcc野生型,黑柱:XccfabG2突变菌株,灰柱:XccfabG2突变菌株携带有XccfabG2表达质粒,条状柱:XccfabG2突变菌株携带有XccfabG1表达质粒

    Figure  6.   XccfabG2 complements OAR mutant strain and invovles in DSF signal synthesis in Xcc

    A: XccfabG2 complement E. coli fabG temperature sensitive strain CL104; EcfabG: CL104 carrying plasmid expressing EcfabG, Vector: CL104 carrying empty plasmid, fabG2: CL104 carrying plasmid expressing XccfabG2, AasS: CL104 carrying plasmid expressing Vibrio harzii aasS, AasS+ fabG2: CL104 carrying plasmid expressing Vibrio harzii aasS and XccfabG2. B: XccfabG2 complement XccfabG1 mutant strain; WT: Wild type X. campestris pv. campestris strain, ∆fabG1+pfabG2: XccfabG1 mutant strain carrying XccfabG2 expressing plasmid. C: The DSFs production of XccfabG2 mutant strains; DSF: cis-11-methyl-2-dodecenoic acid, BDSF: cis-2-dodecenoic acid, White column: Wild-type X. campestris pv. campestris strain, Black column: XccfabG2 mutant strain, Gray column: XccfabG2 mutant strain carrying a plasmid encoding XccfabG2, Stippled column: XccfabG2 mutant strain carrying a plasmid encoding XccfabG1

    图  7   XccfabG3互补CL104并参与菌黄素合成

    A:XccfabG3互补大肠埃希菌fabG温度敏感突变菌株CL104;EcfabG:质粒携带有大肠埃希菌fabG基因,fabG1:质粒携带有XccfabG1基因,Vector:空质粒载体,fabG3:质粒携带有XccfabG3基因,CL104:无外源质粒。B: XccfabG3突变菌株的菌黄素产量;Xcc WT:Xcc野生型,Xcc YH1:XccfabG3突变菌株,Xcc YH2:XccfabG3突变菌株携带有XccfabG3表达质粒,Xcc YH6:XccfabG3突变菌株携带有XccfabG1表达质粒,Xcc YH10:XccfabG3突变菌株携带有XccfabG2表达质粒,Xcc YH7:XccfabG3突变菌株携带有EcfabG表达质粒,Xcc YH1+3-HBA:XccfabG3突变菌株添加3−羟基丁酸

    Figure  7.   XccfabG3 complements CL104 and invovles in xanthomonadin synthesis in Xcc

    A: XccfabG3 complement Escherichia coli fabG temperature sensitive strain CL104; EcfabG: CL104 carrying plasmid expressing EcfabG, fabG1: CL104 carrying plasmid expressing XccfabG1, Vector: CL104 carrying empty plasmid, fabG3: CL104 carrying plasmid expressing XccfabG3, CL104: CL104 without plasmid. B: Xanthomonadin production in XccfabG3 mutant; Xcc WT: Wild-type X. campestris pv. campestris strain, Xcc YH1: XccfabG3 mutant, Xcc YH2: XccfabG3 mutant carrying XccfabG3 ecoding plasmid, Xcc YH6: XccfabG3 mutant carrying XccfabG1 ecoding plasmid, Xcc YH10: XccfabG3 mutant carrying XccfabG2 ecoding plasmid, Xcc YH7: XccfabG3 mutant carrying EcfabG ecoding plasmid, Xcc YH1+3-HBA: XccfabG3 mutant supplemented with 3-hydroxybutyric acid

  • [1]

    PARSONS J B, ROCK C O. Bacterial lipids: Metabolism and membrane homeostasis[J]. Progress in Lipid Research, 2013, 52(3): 249-276. doi: 10.1016/j.plipres.2013.02.002

    [2]

    KANEDA T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance[J]. Microbiological Reviews, 1991, 55(2): 288-302. doi: 10.1128/mr.55.2.288-302.1991

    [3]

    CRONAN J E, THOMAS J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways[J]. Methods in Enzymology, 2009, 459: 395-433.

    [4]

    SANJURJO P, RUIZ J I, MONTEJO M. Inborn errors of metabolism with a protein-restricted diet: Effect on polyunsaturated fatty acids[J]. Journal of Inherited Metabolic Disease, 1997, 20(6): 783-789. doi: 10.1023/A:1005367701176

    [5]

    ROCK C O, CRONAN J E. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1302(1): 1-16. doi: 10.1016/0005-2760(96)00056-2

    [6]

    GOVERS-RIEMSLAG J W P, JANSSEN M P, ZWAAL R F A, et al. Effect of membrane fluidity and fatty acid composition on the prothrombin-converting activity of phospholipid vesicles[J]. Biochemistry, 1992, 31(41): 10000-10008.

    [7]

    ZHANG Y M, ROCK C O. Membrane lipid homeostasis in bacteria[J]. Nature Reviews Microbiology, 2008, 6(3): 222-233. doi: 10.1038/nrmicro1839

    [8]

    YUAN Y Q, LEEDS J A, MEREDITH T C. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis[J]. Journal of Bacteriology, 2012, 194(19): 5185-5196. doi: 10.1128/JB.00860-12

    [9]

    ZHANG L, VERES-SCHALNAT T A, SOMOGYI A, et al. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays[J]. Applied and Environmental Microbiology, 2012, 78(24): 8611-8622. doi: 10.1128/AEM.02111-12

    [10]

    CHRISTENSEN Q H, CRONAN J E. Lipoic acid synthesis: A new family of octanoyltransferases generally annotated as lipoate protein ligases[J]. Biochemistry, 2010, 49(46): 10024-10036. doi: 10.1021/bi101215f

    [11]

    LIN S, HANSON R E, CRONAN J E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway[J]. Nature Chemical Biology, 2010, 6(9): 682-688. doi: 10.1038/nchembio.420

    [12]

    WANG Q, LIU C S, XIAN M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli[J]. Journal of Microbiology, 2012, 50(4): 693-697. doi: 10.1007/s12275-012-2234-y

    [13]

    YU Y, HU Z, DONG H, et al. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis[J]. Scientific Reports, 2016, 6: 32811. doi: 10.1038/srep32811

    [14]

    HAN J, LU Q H, ZHOU L G, et al. Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii[J]. Applied and Environmental Microbiology, 2009, 75(19): 6168-6175. doi: 10.1128/AEM.00938-09

    [15]

    CRONAN J E JR. The structure of mammalian fatty acid synthase turned back to front[J]. Chemistry & Biology, 2004, 11(12): 1601-1602.

    [16]

    AMSTUTZ C L, FRISTEDT R, SCHULTINK A, et al. An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis[J]. Nature Plants, 2020, 6(2): 154-166. doi: 10.1038/s41477-020-0591-9

    [17]

    KOO A J, FULDA M, BROWSE J, et al. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids[J]. The Plant Journal, 2005, 44(4): 620-632. doi: 10.1111/j.1365-313X.2005.02553.x

    [18]

    LEE S, JUNG Y, LEE S, et al. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2013, 169(5): 1606-1619. doi: 10.1007/s12010-012-0088-8

    [19]

    CRONAN J E JR. Phospholipid modifications in bacteria[J]. Current Opinion in Microbiology, 2002, 5(2): 202-205. doi: 10.1016/S1369-5274(02)00297-7

    [20]

    MA J C, WU Y Q, CAO D, et al. Only acyl carrier protein 1 (AcpP1) functions in Pseudomonas aeruginosa fatty acid synthesis[J]. Frontiers in Microbiology, 2017, 8: 2186.

    [21]

    ROCK C O, JACKOWSKI S. Forty years of bacterial fatty acid synthesis[J]. Biochemical and Biophysical Research Communications, 2002, 292(5): 1155-1166. doi: 10.1006/bbrc.2001.2022

    [22]

    KONDAKOVA T, KUMAR S, CRONAN J E. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2[J]. Chemistry and Physics of Lipids, 2019, 222: 23-35. doi: 10.1016/j.chemphyslip.2019.04.010

    [23]

    HEATH R J, ROCK C O. Fatty acid biosynthesis as a target for novel antibacterials[J]. Current Opinion in Investigational Drugs, 2004, 5(2): 146-153.

    [24]

    PARSONS J B, ROCK C O. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?[J]. Current Opinion in Microbiology, 2011, 14(5): 544-549. doi: 10.1016/j.mib.2011.07.029

    [25]

    MOLNOS J, GARDINER R, DALE G E, et al. A continuous coupled enzyme assay for bacterial malonyl-CoA: Acyl carrier protein transacylase (FabD)[J]. Analytical Biochemistry, 2003, 319(1): 171-176. doi: 10.1016/S0003-2697(03)00327-0

    [26]

    SIX D A, YUAN Y Q, LEEDS J A, et al. Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(1): 153-161. doi: 10.1128/AAC.01804-13

    [27] 余永红, 段园园, 董会娟, 等. 茄科雷尔氏菌脂酰−CoA合成酶的功能鉴定[J]. 微生物学通报, 2017, 44(2): 366-374. doi: 10.13344/j.microbiol.china.160688
    [28]

    BI H, ZHU L, JIA J, et al. Unsaturated fatty acid synthesis in the gastric pathogen Helicobacter pylori proceeds via a backtracking mechanism[J]. Cell Chemical Biology, 2016, 23(12): 1480-1489. doi: 10.1016/j.chembiol.2016.10.007

    [29] 雷鸣, 马金成, 王海洪. 流产布氏杆菌烯脂酰ACP还原酶的鉴定[J]. 生物化学与生物物理进展, 2012, 39(5): 464-471.
    [30] 余永红, 马建荣, 王海洪. 野油菜黄单胞菌中烯脂酰ACP还原酶的功能鉴定[J]. 生物化学与生物物理进展, 2016, 43(5): 514-522. doi: 10.16476/j.pibb.2015.0343
    [31]

    DONG H J, MA J C, CHEN Q Y, et al. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway[J]. The Journal of Biological Chemistry, 2021, 297(2): 100920.

    [32]

    HEATH R J, ROCK C O. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis[J]. The Journal of Biological Chemistry, 1996, 271(44): 27795-27801. doi: 10.1074/jbc.271.44.27795

    [33]

    ZHU L, CHENG J L, LUO B, et al. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis[J]. BMC Microbiology, 2009, 9: 119.

    [34]

    CAMPBELL J W, CRONAN J E JR. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery[J]. Annual Review of Microbiology, 2001, 55: 305-332. doi: 10.1146/annurev.micro.55.1.305

    [35]

    CHENG J L, MA J C, LIN J S, et al. Only one of the five Ralstonia solanacearum long-chain 3-ketoacyl-acyl carrier protein synthase homologues functions in fatty acid synthesis[J]. Applied and Environmental Microbiology, 2012, 78(5): 1563-1573. doi: 10.1128/AEM.07335-11

    [36]

    GOLDBECK O, ECK A W, SEIBOLD G M. Real time monitoring of NADPH concentrations in Corynebacterium glutamicum and Escherichia coli via the genetically encoded sensor mBFP[J]. Frontiers in Microbiology, 2018, 9: 2564.

    [37]

    KALLBERG Y, OPPERMANN U, PERSSON B. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models[J]. The FEBS Journal, 2010, 277(10): 2375-2386. doi: 10.1111/j.1742-4658.2010.07656.x

    [38]

    ZHANG Y, CRONAN J. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster[J]. Journal of Bacteriology, 1998, 180: 3295-3303.

    [39]

    PODKOVYROV S M, LARSON T J. Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli[J]. Nucleic Acids Research, 1996, 24(9): 1747-1752. doi: 10.1093/nar/24.9.1747

    [40]

    LAI C Y, CRONAN J E. Isolation and characterization of beta-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2004, 186(6): 1869-1878. doi: 10.1128/JB.186.6.1869-1878.2004

    [41]

    WANG H H, CRONAN J E. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase[J]. Biochemistry, 2004, 43(37): 11782-11789. doi: 10.1021/bi0487600

    [42]

    FENG S X, MA J C, YANG J, et al. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons[J]. BMC Microbiology, 2015, 15: 223.

    [43]

    MAO Y H, LI F, MA J C, et al. Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis[J]. Molecular Plant-Microbe Interactions: MPMI, 2016, 29(6): 458-467. doi: 10.1094/MPMI-07-15-0148-R

    [44]

    HU Z, DONG H J, MA J C, et al. Novel Xanthomonas campestris long-chain-specific 3-oxoacyl-acyl carrier protein reductase involved in diffusible signal factor synthesis[J]. mBio, 2018, 9(3): e00596-e00518.

    [45]

    GUO Q Q, ZHANG W B, ZHANG C, et al. Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in Pseudomonas aeruginosa PAO1[J]. Frontiers in Microbiology, 2019, 10: 1028.

    [46]

    CUKIER C D, HOPE A G, ELAMIN A A, et al. Discovery of an allosteric inhibitor binding site in 3-oxo-acyl-ACP reductase from Pseudomonas aeruginosa[J]. ACS Chemical Biology, 2013, 8(11): 2518-2527.

    [47]

    JOERNVALL H, PERSSON B, KROOK M, et al. Short-chain dehydrogenases/reductases (SDR)[J]. Biochemistry, 1995, 34(18): 6003-6013. doi: 10.1021/bi00018a001

    [48]

    PERSSON B, KALLBERG Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs)[J]. Chemico Biological Interactions, 2013, 202(1): 111-115.

    [49]

    LORD D M, BARAN A U, WOOD T K, et al. BdcA, a protein important for Escherichia coli biofilm dispersal, is a short-chain dehydrogenase/reductase that binds specifically to NADPH[J]. PLoS One, 2014, 9(9): e105751.

    [50]

    FISHER M, KROON J T, MARTINDALE W, et al. The X-ray structure of Brassica napus β-keto acyl carrier protein reductase and its implications for substrate binding and catalysis[J]. Structure, 2000, 8(4): 339-347. doi: 10.1016/S0969-2126(00)00115-5

    [51]

    BUYSSCHAERT G, VERSTRAETE K, SAVVIDES S N, et al. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference[J]. The FEBS Journal, 2013, 280(5): 1358-1370. doi: 10.1111/febs.12128

    [52]

    YANG J K, YOON H J, AHN H J, et al. Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a beta-ketoacyl carrier protein reductase homologue[J]. Acta Crystallographica Section D, Biological Crystallography, 2002, 58(Pt2): 303-305.

    [53]

    REN Q, SIERRO N, WITHOLT B, et al. FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli[J]. Journal of Bacteriology, 2000, 182(10): 2978-2981. doi: 10.1128/JB.182.10.2978-2981.2000

    [54]

    PRICE A C, ZHANG Y M, ROCK C O, et al. Structure of β-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: Negative cooperativity and its structural asis[J]. Biochemistry, 2001, 40(43): 12772-12781.

    [55]

    CROSS E M, ADAMS F G, WATERS J K, et al. Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases[J]. Scientific Reports, 2021, 11(1): 1-16. doi: 10.1038/s41598-020-79139-8

    [56]

    VELLA P, RUDRARAJU R S, LUNDBäCK T, et al. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from gram-negative ESKAPE pathogens[J]. Bioorganic & Medicinal Chemistry, 2021, 30: 115898.

    [57]

    PRICE A C, ZHANG Y M, ROCK C O, et al. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG[J]. Structure, 2004, 12(3): 417-428. doi: 10.1016/j.str.2004.02.008

    [58]

    ZHANG Y M, WU B N, ZHENG J, et al. Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction[J]. The Journal of Biological Chemistry, 2003, 278(52): 52935-52943. doi: 10.1074/jbc.M309874200

    [59] 童文华, 张文彬, 马金成, 等. 大肠杆菌3−酮基脂酰ACP还原酶110位天冬酰胺突变后的结构与功能[J]. 中国生物化学与分子生物学报, 2012, 28(8): 713-721. doi: 10.13865/j.cnki.cjbmb.2012.08.010
    [60]

    HU Z, MA J C, CHEN Y C, et al. Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes[J]. The Journal of Biological Chemistry, 2021, 296: 100365.

    [61]

    CROSS E M, ARAGÃO D, SMITH K M, et al. Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii[J]. Biochemical and Biophysical Research Communications, 2019, 518(3): 465-471. doi: 10.1016/j.bbrc.2019.08.056

    [62]

    ZHANG Y M, WHITE S W, ROCK C O. Inhibiting bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 2006, 281(26): 17541-17544. doi: 10.1074/jbc.R600004200

    [63]

    ZHENG Y M, ZHU Y S, MAO X H, et al. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice[J]. Molecular Plant Pathology, 2022, 23(1): 78-91. doi: 10.1111/mpp.13144

    [64]

    ZHANG Y M, ROCK C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Journal of Biological Chemistry, 2004, 279(30): 30994-31001. doi: 10.1074/jbc.M403697200

    [65]

    WU D, WU X D, YOU X F, et al. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid[J]. Phytotherapy Research: PTR, 2010, 24(S1): S35-S41. doi: 10.1002/ptr.2873

    [66]

    ENGEN K, ROSENSTRÖM U, AXELSSON H, et al. Identification of drug-Like inhibitors of insulin-regulated aminopeptidase through small-molecule screening[J]. Assay and Drug Development Technologies, 2016, 14(3): 180-193. doi: 10.1089/adt.2016.708

    [67]

    VARAKALA S D, RESHMA R S, SCHNELL R, et al. Lead derivatization of ethyl 6-bromo-2-((dimethylamino) methyl)-5-hydroxy-1-phenyl-1H-indole-3-carboxylate and 5-bromo-2-(thiophene-2-carboxamido) benzoic acid as FabG inhibitors targeting ESKAPE pathogens[J]. European Journal of Medicinal Chemistry, 2022, 228: 113976.

    [68]

    KRISTAN K, BRATKOVIC T, SOVA M, et al. Novel inhibitors of beta-ketoacyl-ACP reductase from Escherichia coli[J]. Chemico Biological Interactions, 2009, 178(1): 310-316.

    [69]

    BANERJEE A, SUGANTINO M, SACCHETTINI J C, et al. The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance[J]. Microbiology, 1998, 144(10): 2697-2704. doi: 10.1099/00221287-144-10-2697

    [70]

    MARRAKCHI H, DUCASSE S, LABESSE G, et al. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II[J]. Microbiology, 2002, 148(Pt4): 951-960.

    [71]

    PARISH T, ROBERTS G, LAVAL F, et al. Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG[J]. Journal of Bacteriology, 2007, 189(10): 3721-3728. doi: 10.1128/JB.01740-06

    [72]

    DENG Y Y, WU J E, TAO F, et al. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria[J]. Chemical Reviews, 2011, 111(1): 160-173. doi: 10.1021/cr100354f

    [73] 周莲, 王杏雨, 何亚文. 植物病原黄单胞菌DSF信号依赖的群体感应机制及调控网络[J]. 中国农业科学, 2013, 46(14): 2910-2922. doi: 10.3864/j.issn.0578-1752.2013.14.007
    [74]

    YU Y H, MA J R, GUO Q Q, et al. A novel 3-oxoacyl-ACP reductase (FabG3) is involved in the xanthomonadin biosynthesis of Xanthomonas campestris pv. campestris[J]. Molecular Plant Pathology, 2019, 20(12): 1696-1709. doi: 10.1111/mpp.12871

    [75]

    SINGH R, REYNOLDS K A. Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase[J]. Chembiochem, 2015, 16(4): 631-640. doi: 10.1002/cbic.201402670

  • 期刊类型引用(1)

    1. 庞丹丹,刘玉飞,蒋会兵,田易萍,陈春林,许燕,邓少春,陈林波. 茶树完全不育花内源激素含量分析. 南方农业学报. 2025(04): 1235-1244 . 百度学术

    其他类型引用(1)

图(7)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  12
  • PDF下载量:  325
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-08-21
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

    /

    返回文章
    返回