• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

呕吐毒素的毒理机制及防治策略研究进展

邓诣群, 林如琴, 吴思婷, 余丹妮, 刘思

邓诣群, 林如琴, 吴思婷, 等. 呕吐毒素的毒理机制及防治策略研究进展[J]. 华南农业大学学报, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
引用本文: 邓诣群, 林如琴, 吴思婷, 等. 呕吐毒素的毒理机制及防治策略研究进展[J]. 华南农业大学学报, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
DENG Yiqun, LIN Ruqin, WU Siting, et al. Research progress in toxicological mechanism and prevention strategy of deoxynivalenol[J]. Journal of South China Agricultural University, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
Citation: DENG Yiqun, LIN Ruqin, WU Siting, et al. Research progress in toxicological mechanism and prevention strategy of deoxynivalenol[J]. Journal of South China Agricultural University, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017

呕吐毒素的毒理机制及防治策略研究进展

基金项目: 国家自然科学基金−广东联合基金重点项目(U1901207);岭南现代农业科学与技术广东省实验室科研项目(NZ2021016);国家自然科学基金(32102718)
详细信息
    作者简介:

    邓诣群,教授,博士,主要从事真菌毒素分子毒理及代谢转化机制研究,E-mail: yqdeng@scau.edu.cn
    邓诣群,教授,博士生导师。致力于动物蛋白质(酶)的功能、结构及调控机理研究,重点关注真菌毒素等外源化合物在动物体内的分子毒理和代谢转化机制。入选国家“万人计划”科技创新领军人才、广东省“珠江学者”特聘教授、教育部“新世纪优秀人才支持计划”;兼任中国生物化学与分子生物学会理事、广东省农业生物蛋白质功能与调控重点实验室主任。主持国家重点基础研究发展计划(973)课题、国家自然科学基金−广东联合基金重点项目、广东省自然科学基金研究团队项目等;以通信/共同通信作者发表60多篇论文,获得8项授权国家发明专利;荣获全国师德标兵、教育部霍英东青年教师奖(二等奖)、广东省丁颖科技奖和第十二届大北农科技奖创新奖等

  • 中图分类号: S816

Research progress in toxicological mechanism and prevention strategy of deoxynivalenol

  • 摘要:

    呕吐毒素是对粮谷、饲料原料和饲料等污染最为普遍和严重的真菌毒素之一,畜禽摄入呕吐毒素污染的饲料会出现呕吐、腹泻、拒食和体重减轻等急、慢性的中毒症状,严重的可导致死亡,威胁着畜禽的健康养殖。呕吐毒素的毒理机制和代谢转化是农业和食品领域的研究热点。本文主要从呕吐毒素的细胞毒理机制、生物防治方法和脱毒微生物的筛选研究等方面,综述近年来国内外的研究进展,为防控呕吐毒素对畜禽的危害提供参考。

    Abstract:

    Deoxynivalenol (DON) is one of the most common and serious polluted mycotoxins that contaminate grains, feed ingredients and feed. The acute or chronic poisoning symptoms of feed-borne exposure to DON in animals are vomiting, diarrhea, feed refusal, weight loss and even death, which seriously threatens the healthy breeding of animal. The toxicity mechanism and metabolic transformation of DON are the research hotspots in the fields of agriculture and food. This article reviews the latest domestic and international research progress in the cytotoxicological mechanism, biological prevention methods and detoxification microorganism screening of DON. It is expected to provide references for prevention and control of the harm of DON to animal.

  • 大豆Glycine max (L.) Merr.是我国主要粮食和饲料原料,各地均有广泛种植。随着工业的快速发展,废水、废液大量排放,重金属污染的农田面积日益增加[1]。镉(Cd)是污染农田的主要重金属之一,Cd不但会阻碍植物的正常生长,而且通过根系积累在植物的可食部分危害人类的健康[2-4]。Cd污染的土壤中生产的大豆种子容易受到Cd污染[5-8], 但大豆Cd抗性与籽粒积累存在基因型差异[5, 7-8],利用大豆的遗传潜力选育抗Cd且低积累的大豆品种可提高大豆品质[9-10]。全面了解大豆抗Cd和籽粒重金属累积的遗传机制是开展大豆抗Cd、Cd低积累品种选育的基础。

    Cd进入植物体内后可与细胞内活性物质结合,诱导产生氧化胁迫使细胞受到伤害[11-12]。植物进化了一系列的抗性机制抵御Cd毒害,主要包括:1)植物体内产生一系列抗氧化酶和抗氧化剂克服Cd诱导的氧化胁迫;2)抗坏血酸-谷胱甘肽循环系统维持细胞氧化还原平衡;3)植物体内螯合物与Cd结合;4)Cd区室化及外排机制等[13-14]。植物体内的半胱氨酸(Cys)、甲硫氨酸(Met)、金属硫蛋白(MTs)、谷胱甘肽(GSH)和植物螯合肽(PC)等巯基物质可螯合Cd离子,解除Cd的毒害。在水稻Oryza sativa、小麦Triticum aestivum和拟南芥Arabidopsis thaliana等植物中证实巯基物质在重金属螯合、固定等方面起到了重要作用[15-19],但在遏蓝菜Thlaspi caerulescens、白玉草Silene vulgaris、蒿柳Salix viminalis和蜈蚣草Pteris vittata等植物中发现巯基物质的积累与抗重金属胁迫并无相关性,抗性品种较敏感品种具有较低巯基物质浓度[20-23]。巯基物质的结合与重金属亚细胞分布相关,形成PC-Cd螯合物进入液泡后,通过氨基酸循环再生,最终导致液泡中的重金属不断积累,但并未造成巯基物质的升高[23-24]。巯基物质还是植物体内重要的抗氧化剂和信号物质[25],谷胱甘肽代谢能够直接减少细胞内H2O2的形成[26]。植物体内非蛋白疏基物质主要包含总非蛋白疏基肽(NPT)、谷光甘肽(GSH)和植物螯肽(PC)[27]。Vazquez等[28]研究大豆和白羽扇豆Lupinus albus植物中螯合物对镉胁迫的作用时,发现镉胁迫下大豆苗期植株巯基总量、GSH和PC均有增加,但和白羽扇豆相比,大豆苗期植株巯基总量、GSH和PC与镉抗性无显著相关。本研究利用Cd污染的土壤进行盆栽试验,通过比较在不同发育时期镉抗性不同的大豆品种间各器官巯基物质的动态变化,以揭示巯基物质与镉抗性和积累间的关系。

    根据赵云云等[5, 7-8]的研究结果,选择了镉抗性和籽粒积累不同的大豆品种华夏3号(抗性品种)和中黄24(敏感品种)为研究材料。选取大小一致、饱满圆润的大豆种子,用体积分数为5%的NaClO浸泡1 min, 去离子水冲洗后播于石英砂(已经洗涤、高温烘干)中发芽育苗,待幼苗子叶展开时选取大小一致的幼苗移栽于温室盆中,每个盆中移栽3株幼苗。每盆土壤7 kg,3次重复,设对照(土中不添加Cd)和处理(土中加入Cd 10 mg·kg-1),充分混匀。在整个培养期间采用定量浇水、施肥保证每盆管理一致。

    分别在苗期(第3片复叶完全展开)、初花期、初荚期和成熟初期根据取样要求将一定数目的大豆植株用自来水从盆中冲洗取出,以确保得到完整的植株,用吸水纸吸干表面水分,分别测定大豆根、茎、叶鲜质量,随后立即放入-20 ℃冰箱中冷冻,用于测定相关指标。抗性指数(TI)计算如下:TI=Cd处理的生物量/对照的生物量。

    分别从每个重复当中称取干样1 g装至50 mL三角瓶中,倒入10 mL预先准备好的φ为69%的HNO3+φ为72%的HClO4混合液(体积比87:13)浸泡,封口过夜后,放入恒温电热板中进行消化,当三角瓶中的液体呈无色透明状且体积小于1 mL时,将其取出、室温冷却,定容50 mL后过滤。采用原子吸收分光光度计(原子吸收光谱法,日立180-80光谱带宽度1.3 nm)测定镉离子含量,精确度为0.01 mg·kg-1[29]

    NPT含量的测定采用比色法[30]:取鲜样1 g放置于研钵中, 加入预冷的体积分数为5%的SSA(含6.3 mmol·L-1 DTPA) 6 mL和少量石英砂冰浴,充分研磨, 4 ℃离心(12 000 r·min-1)15 min, 上清液冷藏。取上清液0.2 mL加入0.25 mol·L-1的Tris-HCl(pH 8.3)2.65 mL和10 mmol·L-1的DTNB 0.15 mL,室温放置15 min,然后在412 nm波长下用分光光度计比色测定。以等量的未加DTNB的溶液作为对照,以GSH-SH为标样制作标准曲线[19]

    GSH的测定采用比色法[31]:取鲜样组织1 g放置于研钵中,加入预冷的体积分数为5%的TCA溶液6 mL和少量的石英砂,冰浴充分研磨,4 ℃离心(12 000 r·min-1)15 min, 上清液冷藏。取上清液0.2 mL,加入0.25 mol·L-1的Tris-HCL缓冲液(pH 8.3),摇匀,再加入体积分数为3%的甲醛溶液0.2 mL,摇匀,室温静置20 min后,立刻加入预先25 ℃水浴的DTNB分析溶液3 mL, 摇匀,静置5 min后立刻在波长为412 nm处测定吸光度,根据GSH标准曲线计算GSH浓度。

    采用差减法计算植物组织内PC浓度[32]

    PC浓度=NPT浓度-GSH浓度。

    采用Excel 2003、SigmaPlot 10.0和SPSS 17.0统计分析软件进行数据处理、作图和差异显著性检验。

    镉胁迫下2个品种根系和地上部鲜质量均比对照有所下降,但抗性品种华夏3号下降幅度小,而敏感品种中黄24下降幅度大(图 1)。2个品种随Cd胁迫时间延长根系和地上部鲜质量差异明显;抗性品种华夏3号根系鲜质量在4个时期分别是对照的77.6%、74.6%、82.3%和78.7%,地上部鲜质量分别为对照的50.8%、69.4%、85.0%和85.6%;而敏感品种中黄24根系鲜质量在4个时期分别为对照的51.6%、48.8%、51.1%和41.1%,地上部鲜质量分别为对照的62.5%、52.9%、42.0%和47.7%。表明2个品种间对镉胁迫抗性的差异在初花期后更明显。

    图  1  镉处理下不同时期2个大豆品种根和地上部鲜质量的变化
    相同部位同一时期不同柱子上凡是有一个相同小写字母者,表示差异不显著(P>0.05,Duncan’s法)。
    Figure  1.  Fresh mass of roots and shoots of two soybean varieties at different stages under Cd stress

    镉胁迫下不同发育时期大豆根系镉浓度远高于叶片和茎,华夏3号各器官镉浓度在初荚期后都低于中黄24(图 2)。2个品种根系镉浓度在不同发育时期呈不同的变化,苗期敏感品种中黄24的根系镉浓度显著低于华夏3号,是华夏3号镉浓度的75.4%;2个品种根系镉浓度最高值均出现在初花期且无显著差异;初荚期至成熟期2个品种根系镉浓度不断下降,但中黄24的下降幅度较小,成熟期中黄24根系镉浓度是华夏3号的163.4%(图 2A)。2个品种茎部镉浓度在不同发育时期也呈不同的变化,苗期2个品种茎部Cd浓度差异不显著,华夏3号苗期后迅速下降至初花期最低然后又缓慢增长,而中黄24不断增加至成熟期最高,中黄24茎部Cd浓度在初花期、初荚期、成熟期分别是华夏3号的233%、175%和248%(图 2B)。2个品种叶部镉浓度在不同发育时期均呈先升后降至成熟期最低的趋势,苗期中黄24是华夏3号的132.2%,初花期2个品种差异不显著,初荚期和成熟期中黄24分别是华夏3号的265.5%和160.6%(图 2C)。

    图  2  镉处理下不同时期2个大豆根、茎和叶中镉浓度的变化
    相同部位同一时期不同柱子上凡是有一个相同小写字母者,表示品种间差异不显著(P>0.05,Duncan’s法)。
    Figure  2.  The Cd concentrations in roots, stems and leaves of two soybean varieties at different stages under Cd stress

    对照条件下2个品种在不同发育时期根系中NPT浓度变化趋势相似,初花期前不断增加,初荚期下降,成熟期又快速增加。镉胁迫条件下2个品种在不同发育时期NPT浓度变化完全不同,敏感品种中黄24在苗期大幅增加、初花期和初荚期逐渐下降、成熟期又显著增加,而抗性品种华夏3号随发育不断增加。2个品种间NPT浓度在同一发育时期存在差异,对照条件下中黄24号NPT浓度除初荚期外均显著低于华夏3号,而在镉胁迫条件下苗期和成熟期中黄24显著高于华夏3号,初花期差异不显著,初荚期中黄24显著低于华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄24根系NPT浓度4个时期均高于对照,分别是对照的447%、133%、120%和193%;抗性品种华夏3号NTP浓度仅在初荚期高于对照,其他3个时期均低于对照,分别为对照的72.7%、96.4%和94.5%(图 3A)。

    图  3  镉处理下2个大豆品种不同时期根系中NPT、GSH和PC浓度的变化
    相同指标同一时期不同柱子上凡是有一个相同小写字母者,表示差异不显著(P>0.05,Duncan’s法)。
    Figure  3.  The NPT, GSH and PC concentrations in roots of two soybean varieties at different stages under Cd stress

    对照条件下2个品种不同发育时期根系中GSH变化趋势不同,敏感品种中黄24在初花期略有上升,初荚期显著下降,成熟期达初花期水平;抗性品种华夏3号在初荚期略高于其他3个时期。镉胁迫下2个品种根系中GSH均呈先增加后减少趋势。同一发育时期2个品种间根系中GSH存在差异,对照条件下苗期和初荚期中黄24显著性低于华夏3号,初花期和成熟期相似;镉胁迫下苗期和成熟期中黄24根系中GSH显著高于华夏3号,初花期差异不显著,初荚期中黄24显著低于华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄2 4根系中GSH浓度均显著高于对照,4个时期分别为对照的401%、125%、305%和151%;抗性品种华夏3号根系中GSH浓度只在初花期和初荚期显著性高于对照,4个时期分别为对照的85.3%、128.6%、123.6%和94.3%(图 3B)。

    对照条件下2个品种根系PC浓度随发育呈上升趋势,但华夏3号在初荚期显著下降。镉胁迫下2个品种根系PC浓度随发育变化趋势相似,除初荚期有显著下降外,其他时期呈上升趋势。同一发育时期2个品种根系PC浓度存在差异,对照条件下初荚期敏感品种中黄24高于抗性品种华夏3号,其他时期敏感品种中黄24均低于抗性品种华夏3号;镉胁迫下苗期和成熟期2个品种差异不显著,但初花期和初荚期敏感品种中黄24均低于抗性品种华夏3号。不同发育时期2个品种对镉胁迫响应不同,除初荚期外其他3个时期中黄24根系PC浓度显著高于对照,4个时期分别为对照的635.6%、137.6%、78.5%和219.2%,而抗性品种华夏3号根系中PC浓度则显著低于对照,4个时期分别为对照的70.5%、84.7%、192.2%和94.3%(图 3C)。

    对照条件下2个品种茎部NPT浓度随发育变化趋势不同,中黄24在初花期前有显著增加后维持不变;华夏3号在初荚期前呈不断增加,但在成熟期时有所下降。镉胁迫条件下2个品种茎部NPT浓度随发育变化不同,敏感品种中黄24苗期大幅增加后逐渐下降,成熟期略有增加;抗性品种华夏3号初花期大幅增加,初荚期无变化,成熟期显著下降。同一发育时期2个品种茎部NPT浓度存在差异,对照条件下只在初花期中黄24高于华夏3号,而镉胁迫下苗期和成熟期敏感品种中黄24显著高于抗性品种华夏3号,初花期2个品种相似,初荚期敏感品种中黄24显著低于抗性品种华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄24苗期显著高于对照,4个时期镉胁迫下茎部NPT浓度分别为对照的435.7%、100.2%、79.2%和98.1%,而抗性品种华夏3号在苗期和初荚期与对照无显著差异,4个时期镉胁迫下NPT浓度分别为对照的98.8%、121.6%、95.0%和69.5%(图 4A)。

    图  4  镉处理下2个大豆品种不同时期茎部NPT、GSH和PC浓度的变化
    相同指标同一时期不同柱子上凡是有一个相同小写字母者,表示差异不显著(P>0.05,Duncan’s法)。
    Figure  4.  The NPT, GSH and PC concentrations in stems of two soybean varieties in different periods under Cd stress

    对照条件下2个品种茎部GSH均随发育逐渐增加。镉胁迫下2个品种茎部GSH呈不同的变化趋势,敏感品种中黄24茎部GSH浓度在苗期快速增加,初花期后逐渐下降;抗性品种华夏3号在初花期显著增加后保持不变。同一发育时期2个品种间存在差异,对照条件下初荚期中黄24显著低于华夏3号,其他时期2个品种GSH浓度差异不显著;镉胁迫下苗期中黄24显著高于华夏3号,初花期和成熟期差异不显著,初荚期中黄24显著低于华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄24在苗期和初花期显著高于对照,镉胁迫下各时期GSH浓度分别为对照的315.2%、124.6%、86.7%和131.9%,而抗性品种华夏3号初花期显著高于对照,其他时期与对照无显著差异,各时期镉处理下GSH浓度分别为对照的100.7%、134.5%、94.2%和84.6%(图 4B)。

    对照条件下2个品种茎部PC随发育呈相似的变化趋势,即初荚期前不断增加,成熟期下降。镉胁迫下2个品种茎部PC浓度变化趋势不同,华夏3号在初荚期前增加,成熟期显著下降;中黄24苗期大幅增加后逐渐下降。同一发育时期2个品种间存在差异,对照条件下苗期中黄24和华夏3号相似,初花期和成熟期中黄24显著高于华夏3号,而初荚期中黄24显著低于华夏3号;镉胁迫下苗期中黄24显著高于华夏3号,初花期差异不显著,初荚期中黄24显著低于华夏3号,成熟期中黄24显著高于华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄24在苗期显著高于对照,而初荚期和成熟期显著低于对照,镉胁迫下4个时期PC浓度分别是对照的634.3%、83.5%、70.6%和65.5%;抗性品种华夏3号在初荚期和成熟期PC浓度显著低于对照,而在苗期和初花期与对照差异不显著,4个时期PC浓度分别是对照的98.8%、107.9%、77.9%和39.2(图 4C)。

    对照条件下2个品种叶片中NPT浓度随发育呈上升趋势。镉胁迫下2个品种叶片中NPT浓度随发育表现不同的变化,敏感品种中黄24初荚期前无显著变化,而成熟期有显著增加;抗性品种华夏3号则不断增加。同一发育时期2个品种间存在差异,对照条件下初花期中黄24显著低于华夏3号,其他时期差异不显著;镉胁迫下苗期中黄24显著高于华夏3号,初花期和成熟期差异不显著,初荚期中黄24显著低于华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄24苗期NPT浓度显著高于对照,其他时期叶部NPT浓度显著低于对照,镉胁迫下4个时期叶片NPT浓度分别是对照的118.9%、85.1%、73.8%和60.8%;抗性品种华夏3号初花期和成熟期叶部NPT浓度显著低于对照,初荚期显著高于对照,苗期无差异,镉处理下4个时期叶片NPT浓度分别是对照的101.6%、76.6%、119.1%和69.7%(图 5A)。

    图  5  镉处理下2个大豆品种不同时期叶部NPT、GSH和PC浓度的变化
    相同指标同一时期不同柱子上凡是有一个相同小写字母者,表示差异不显著(P>0.05,Duncan’s法)。
    Figure  5.  The NPT, GSH and PC concentrations in leaves of two soybean varieties in different periods under Cd stress

    对照条件下2个品种叶片中GSH浓度随发育时间呈上升趋势。镉胁迫下2个品种叶片中GSH浓度随发育呈不同的变化,敏感品种中黄24呈小幅增加,而抗性品种华夏3号在初荚期前呈小幅下降,在成熟期有大幅增加。同一发育时期2个品种间存在差异,对照处理初花期和成熟期中黄24显著低于华夏3号,苗期和初荚期差异不显著;镉胁迫下苗期、初花期和成熟期中黄24显著低于华夏3号,初荚期差异不显著。不同发育时期2个品种对镉胁迫响应不同,镉胁迫下敏感品种中黄24叶片中GSH浓度在4个时期均显著低于对照,分别为对照的45.5%、83.7%、82.8%和69.0%;镉胁迫下华夏3号叶片GSH浓度在初花期与成熟期低于对照,其他时期与对照差异不显著,4个时期分别为对照的106.1%、77.1%、104.1%和84.3%(图 5B)。

    对照条件下2个品种叶片中PC浓度均随着发育不断上升。镉胁迫下2个品种叶片中PC浓度变化不同,敏感品种中黄24苗期大幅增加后逐渐下降,成熟期略有增加;抗性品种初荚期前不断增加,成熟期下降。同一发育时期2个品种间存在差异,对照条件下除初花期外其他时期中黄24均显著高于华夏3号;镉胁迫下苗期中黄24显著高于华夏3号,初荚期中黄24显著低于华夏3号,而成熟期中黄24显著高于华夏3号。不同发育时期2个品种对镉胁迫响应不同,敏感品种中黄24叶片中PC浓度在苗期显著高于对照,其他时期显著低于对照,4个时期分别为对照的337.7%、86.2%、66.5%和53.1%;抗性品种华夏3号叶片中PC浓度在初荚期显著高于对照,其他时期显著低于对照,4个时期分别为对照的61.3%、76.1%、129.8%和49.5%(图 5C)。

    镉胁迫下不同时期不同器官中巯基物质浓度与镉浓度和抗性指数之间的相关性见表 1。初花期根系中GSH与各器官镉浓度呈显著正相关,与各器官抗性指数呈显著负相关;成熟期根系中NPT、GSH和PC均与各器官镉浓度呈显著正相关,与各器官抗性指数呈显著负相关。表明发育前期大豆根系中主要是小分子的GSH响应镉胁迫,而后期根系中NPT、GSH和PC均起到一定的作用。

    表  1  大豆各器官中巯基物质与镉浓度和抗性指数的相关分析1)
    Table  1.  Correlation analysis of non-protein thiol and Cd contents in organs, and tolerance indexes of two soybean genotypes
    下载: 导出CSV 
    | 显示表格

    苗期茎部NPT、GSH和PC与叶部镉浓度呈显著正相关,与根系抗性指数呈显著负相关;初花期时只有茎部GSH与各器官的镉浓度呈显著正相关,而与各器官的抗性指数呈显著负相关;初荚期茎部GSH和初花期相似,但茎部NPT和PC与各器官的镉浓度呈显著负相关,与各器官的抗性指数呈显著正相关;成熟期茎部GSH与根、茎的镉浓度呈显著正相关,与根、地上部的抗性指数呈显著负相关。表明大豆茎部GSH在各时期作用一致,NPT和PC在不同时期作用不同。

    苗期叶部GSH与叶部镉浓度呈显著负相关,与根系抗性指数呈显著正相关;叶部PC与叶部镉浓度呈显著正相关,NPT、PC与根系抗性指数呈显著负相关。初花期叶部NPT与各器官的镉浓度呈显著正相关,与各器官的抗性指数呈显著负相关;叶部PC与各器官的镉浓度呈显著负相关,与各器官的抗性指数呈显著正相关。初荚期叶部GSH与叶部镉浓度呈显著负相关,叶部NPT、GSH均与地上部抗性指数呈显著正相关。成熟期叶部GSH、PC与各器官镉浓度均呈显著负相关,叶部GSH与各器官抗性指数呈显著正相关。表明在不同时期大豆植株叶部巯基物质对镉胁迫响应不同。

    土壤中的镉不仅对大豆生长发育有严重的影响,而且积累在籽粒中通过食物链危害人类健康[33]。在镉污染的土壤上种植大豆必须选择抗Cd、籽粒Cd低积累的大豆品种,而对大豆Cd抗性的评价通常以相对籽粒产量和相对地上部生物量为主要指标,对籽粒Cd积累以籽粒Cd浓度为主要评价指标[7-8, 34]。本研究发现华夏3号各器官在镉处理下4个时期均比中黄24有较高的生物量,且其根系和地上部相对值高于中黄24,表明华夏3号的镉抗性在整个发育时期表现一致。同时发现2品种各器官镉浓度在不同发育时期不同,成熟期中黄24各器官镉浓度均显著高于华夏3号,表明华夏3号低积累特性在成熟期才充分表现。这一结果与盆栽筛选试验结果一致[7]

    植物进化了一系列机制以抵御镉胁迫,包括减少重金属生物利用率、控制重金属进入细胞、螯合重金属以促进重金属流出细胞、区室化隔离、ROS解毒等,其中,体内产生的巯基物质(GSH、PC、CYS等)螯合镉是重要解毒机制之一[18, 35]。巯基物质与镉具有很高的亲和性,形成无毒的络合物存在于细胞质或运输到液泡中,既解除了镉离子的毒性,又阻断了镉离子向其他组织的迁移[36]。同时巯基物质GSH还是植物体内重要的抗氧化剂和信号物质[25],GSH代谢能够直接减少细胞内H2O2的形成[26]。本研究发现镉抗性和籽粒积累不同的2个大豆品种各器官中巯基物质在不同发育时期的动态变化不同。苗期镉胁迫下抗性品种华夏3号根系中NPT、GSH和PC浓度显著性下降,茎、叶中则无显著性变化;敏感品种中黄24的NPT浓度在根、茎、叶(尤以根和茎)显著上升。初花期镉胁迫下抗性低积累品种华夏3号和敏感品种中黄24的根和茎中NPT、GSH和PC浓度均显著升高,但叶部NPT、GSH和PC浓度显著下降,敏感品种更为显著。初荚期镉胁迫下抗性品种华夏3根部NPT、GSH和PC浓度显著高于敏感品种中黄24;敏感品种中黄24茎部NPT、GSH和PC浓度比华夏3号下降更为显著;抗性品种华夏3号叶部NPT、GSH和PC浓度比敏感低品种中黄24显著上升。成熟期镉胁迫下敏感品种中黄24根系NPT、GSH和PC浓度显著上升,而抗性低积累品种华夏3号根系NPT、GSH和PC浓度无显著变化;华夏3号茎部和叶部NPT、GSH和PC浓度显著低于中黄24。表明镉胁迫下敏感品种中黄24的根、茎和叶中非蛋白巯基物质的变化幅度远高于抗性品种华夏3号,这一现象在遏兰菜、白玉草、柳蒿、蜈蚣草等植物中也观察到[20-23]

    有研究发现品种抗性与巯基物质的积累并无显著相关,甚至在一些植物中抗性品种巯基浓度低于敏感品种[20, 22-23]。本研究对非蛋白巯基物质(NPT、GSH和PC)与抗性指数的相关分析发现,不同器官中各种巯基物质对抗性贡献不相同,根系中各发育时期各种巯基物质浓度与抗性呈负相关;各发育时期茎部GSH与抗性指标均呈负相关,而茎部PC自初花期就与抗性呈正相关,总巯基物质只在初荚期呈正相关;叶部只有GSH与抗性指标在各发育时期均是正相关,而叶部PC自初花期就与抗性呈正相关,总巯基物质只在初荚期呈正相关。

    不同发育时期各器官中非蛋白巯基肽与各器官中镉积累相关性不尽相同。根系中各发育时期各种巯基物质浓度与各器官镉浓度呈正相关,且以初花期后根系GSH最为显著。茎部只有GSH与各器官镉浓度在各发育时期呈正相关,而茎部PC初花期至成熟期均与各器官镉浓度呈负相关。叶部只有GSH与各器官镉浓度在各发育时期呈负相关;叶部PC苗期与各器官镉浓度呈正相关,其他时期呈负相关。

    在镉胁迫下与螯合相关的蛋白(PC)和氨基酸(甘氨酸、丝氨酸、谷氨酸)在镉低积累品种中具有较高的活性[37]。镉胁迫下大豆巯基物质的变化规律预示着大豆中巯基物质不仅仅是螯合作用。植物体内巯基物质的作用有3个方面:一是金属螯合剂发挥着解毒作用;二是谷胱甘肽是一种重要的抗氧化剂;三是可作为ROS产生的信号分子[13-14]。镉胁迫下抗性品种与敏感品种不同时期巯基物质变化不尽相同,敏感品种巯基物质变化更为显著,这与遏兰菜、白玉草、柳蒿、蜈蚣草等植物的结果[20-23]一致。这可能是由于不同抗性品种巯基物质合成机制不同,镉胁迫下抗性品巯基物质与镉结合形成螯合物质固定在液泡中,然后通过氨基酸循环,重新形成新的螯合物,而巯基物质变化并不大,这一现象也在生菜和石竹等植物中被发现[23-24]。另一种可能与巯基物质的抗氧化功能有关,镉胁迫下敏感品种体内积累较多活性氧,产生大量巯基物质作为内源活性氧清除剂清除活性氧,维持细胞代谢稳定,而抗性品种体内活性氧较低,同时还有其他物质可清除活性氧。因此镉胁迫下大豆中巯基物质的作用是多方面的,有待深入研究。

  • [1]

    PINTON P, OSWALD I P. Effect of deoxynivalenol and other type B trichothecenes on the intestine: A review[J]. Toxins, 2014, 6(5): 1615-1643. doi: 10.3390/toxins6051615

    [2]

    KHOSHAL A K, NOVAK B, MARTIN P G P, et al. Co-occurrence of DON and emerging mycotoxins in worldwide finished pig feed and their combined toxicity in intestinal cells[J]. Toxins, 2019, 11(12): 727. doi: 10.3390/toxins11120727.

    [3]

    ZHAO Y J, GUAN X L, ZONG Y, et al. Deoxynivalenol in wheat from the Northwestern region in China[J]. Food Additives & Contaminants: Part B, 2018, 11(4): 281-285.

    [4] 王国强. 2019年我国部分地区饲料及饲料原料霉菌毒素污染调查报告[J]. 养猪, 2020(2): 14-16. doi: 10.3969/j.issn.1002-1957.2020.02.005
    [5] 李孟聪, 丁燕玲, 谭磊, 等. 2020年广东省动物饲料中4种主要霉菌毒素污染调查[J]. 畜牧与兽医, 2021, 53(5): 122-126.
    [6]

    MARESCA M, FANTINI J. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases[J]. Toxicon, 2010, 56(3): 282-294. doi: 10.1016/j.toxicon.2010.04.016

    [7]

    PAYROS D, ALASSANE-KPEMBI I, PIERRON A, et al. Toxicology of deoxynivalenol and its acetylated and modified forms[J]. Archives of Toxicology, 2016, 90(12): 2931-2957. doi: 10.1007/s00204-016-1826-4

    [8]

    SUNDHEIM L, LILLEGAARD I T, FAESTE C K, et al. Deoxynivalenol exposure in Norway, risk assessments for different human age groups[J]. Toxins, 2017, 9(2): 46. doi: 10.3390/toxins9020046.

    [9]

    HOOFT J M, BUREAU D P. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species[J]. Food and Chemical Toxicology, 2021, 157: 112616. doi: 10.1016/j.fct.2021.112616.

    [10]

    WANG Z H, WU Q H, KUČA K, et al. Deoxynivalenol: Signaling pathways and human exposure risk assessment: An update[J]. Archives of Toxicology, 2014, 88(11): 1915-1928. doi: 10.1007/s00204-014-1354-z

    [11]

    LI X, MU P, WEN J, et al. Carrier-mediated and energy-dependent uptake and efflux of deoxynivalenol in mammalian cells[J/OL]. Scientific Reports, 2017, 7(1): 5889. [2022-08-01]. https://doi.org/10.1038/s41598-017-06199-8.

    [12]

    LI X M, MU P Q, QIAO H, et al. JNK-AKT-NF-κB controls P-glycoprotein expression to attenuate the cytotoxicity of deoxynivalenol in mammalian cells[J]. Biochemical Pharmacology, 2018, 156: 120-134. doi: 10.1016/j.bcp.2018.08.020

    [13]

    YUAN L P, MU P Q, HUANG B Y, et al. EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3ΔZip2a/2b-EGR1-p21 pathway[J]. Toxicology Letters, 2018, 299: 95-103. doi: 10.1016/j.toxlet.2018.09.012

    [14]

    HU Z S, SUN Y, CHEN J J, et al. Deoxynivalenol globally affects the selection of 3' splice sites in human cells by suppressing the splicing factors, U2AF1 and SF1[J]. RNA Biology, 2020, 17(4): 584-495. doi: 10.1080/15476286.2020.1719750

    [15]

    LIN R Q, SUN Y, MU P Q, et al. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice[J]. Biochemical Pharmacology, 2020, 175: 113868. doi: 10.1016/j.bcp.2020.113868.

    [16]

    QIAO H, JIANG T Q, MU P Q, et al. Cell fate determined by the activation balance between PKR and SPHK1[J]. Cell Death and Differentiation, 2021, 28(1): 401-418.

    [17]

    YANG Y X, YU S, LIU N, et al. Transcription factor FOXO3a is a negative regulator of cytotoxicity of Fusarium mycotoxin in GES-1 cells[J]. Toxicological Sciences, 2018, 166(2): 370-381.

    [18]

    NDLOVU S, NAGIAH S, ABDUL N S, et al. Deoxynivalenol downregulates NRF2-induced cytoprotective response in human hepatocellular carcinoma (HepG2) cells[J]. Toxicon, 2021, 193: 4-12. doi: 10.1016/j.toxicon.2021.01.017

    [19]

    MAO X X, LI J, XIE X, et al. Deoxynivalenol induces caspase-3/GSDME-dependent pyroptosis and inflammation in mouse liver and HepaRG cells[J/OL]. Archives of Toxicology, 2022. [2022-08-01]. https://doi.org/10.1007/s00204-022-03344-9.

    [20]

    TANG S L, CHEN S, HUANG B Y, et al. Deoxynivalenol induces inhibition of cell proliferation via the Wnt/β-catenin signaling pathway[J]. Biochemical Pharmacology, 2019, 166: 12-22. doi: 10.1016/j.bcp.2019.05.009

    [21]

    LI X G, ZHU M, CHEN M X, et al. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway[J]. Toxicology Letters, 2019, 305: 19-31. doi: 10.1016/j.toxlet.2019.01.008

    [22]

    PAI S G, CARNEIRO B A, MOTA J M, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response[J]. Journal of Hematology & Oncology, 2017, 10(1): 1-12.

    [23]

    MU H B, MU P Q, ZHU W Y, et al. Low doses of deoxynivalenol inhibit the cell migration mediated by H3K27me3-targeted downregulation of TEM8 expression[J]. Biochemical Pharmacology, 2020, 175: 113897. doi: 10.1016/j.bcp.2020.113897.

    [24]

    ZHAO Y, TANG S, LIN R, et al. Deoxynivalenol exposure suppresses adipogenesis by inhibiting the expression of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) in 3T3-L1 cells[J]. International Journal of Molecular Sciences, 2020, 21(17): 6300. doi: 10.3390/ijms21176300.

    [25]

    WANG S, YANG J C, ZHANG B Y, et al. Deoxynivalenol impairs porcine intestinal host defense peptide expression in weaned piglets and IPEC-J2 Cells[J]. Toxins, 2018, 10(12): 541. doi: 10.3390/toxins10120541.

    [26]

    GU X L, GUO W Y, ZHAO Y J, et al. Deoxynivalenol-induced cytotoxicity and apoptosis in IPEC-J2 cells through the activation of autophagy by inhibiting PI3K-AKT-mTOR signaling pathway[J]. ACS Omega, 2019, 4(19): 18478-18486. doi: 10.1021/acsomega.9b03208

    [27]

    KANG R F, LI R N, DAI P Y, et al. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production[J]. Environmental Pollution, 2019, 251: 689-698. doi: 10.1016/j.envpol.2019.05.026

    [28]

    LI E K, HORN N, AJUWON K M. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways[J]. Archives of Toxicology, 2021, 95(6): 2065-2079. doi: 10.1007/s00204-021-03044-w

    [29]

    YU Y H, LAI Y H, HSIAO F S H, et al. Effects of deoxynivalenol and mycotoxin adsorbent agents on mitogen-activated protein kinase signaling pathways and inflammation-associated gene expression in porcine intestinal epithelial cells[J]. Toxins, 2021, 13(5): 301. doi: 10.3390/toxins13050301.

    [30]

    ZHANG H, DENG X W, ZHOU C, et al. Deoxynivalenol induces inflammation in IPEC-J2 cells by activating P38 mapk and Erk1/2[J]. Toxins, 2020, 12(3): 180. doi: 10.3390/toxins12030180.

    [31]

    WANG X C, ZHANG Y Y, ZHAO J, et al. Deoxynivalenol induces inflammatory injury in IPEC-J2 cells via NF-κB signaling pathway[J]. Toxins, 2019, 11(12): 733. doi: 10.3390/toxins11120733.

    [32]

    WANG X C, ZHANG Y F, CAO L, et al. Deoxynivalenol induces intestinal damage and inflammatory response through the nuclear factor-κB signaling pathway in piglets[J]. Toxins, 2019, 11(11): 663. doi: 10.3390/toxins11110663.

    [33]

    GE L, LIU D D, MAO X R, et al. Low dose of deoxynivalenol aggravates intestinal inflammation and barrier dysfunction induced by enterotoxigenic Escherichia coli infection through activating macroautophagy/NLRP3 inflammasomes[J]. Journal of Agricultural and Food Chemistry, 2022, 70(9): 3009-3022. doi: 10.1021/acs.jafc.1c07834

    [34]

    LIU D D, WANG Q, HE W M, et al. Two-way immune effects of deoxynivalenol in weaned piglets and porcine alveolar macrophages: Due mainly to its exposure dosage[J]. Chemosphere, 2020, 249: 126464. doi: 10.1016/j.chemosphere.2020.126464.

    [35]

    JI J, ZHU P, CUI F C, et al. The disorder metabolic profiling in kidney and spleen of mice induced by mycotoxins deoxynivalenol through gas chromatography mass spectrometry[J]. Chemosphere, 2017, 180: 267-274. doi: 10.1016/j.chemosphere.2017.03.129

    [36]

    REN Z H, GUO C Y, HE H Y, et al. Effects of deoxynivalenol on mitochondrial dynamics and autophagy in pig spleen lymphocytes[J]. Food and Chemical Toxicology, 2020, 140: 111357. doi: 10.1016/j.fct.2020.111357.

    [37]

    WANG X C, CHEN X F, CAO L, et al. Mechanism of deoxynivalenol-induced neurotoxicity in weaned piglets is linked to lipid peroxidation, dampened neurotransmitter levels, and interference with calcium signaling[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110382. doi: 10.1016/j.ecoenv.2020.110382.

    [38]

    WANG X C, CHU X Y, CAO L, et al. The role and regulatory mechanism of autophagy in hippocampal nerve cells of piglet damaged by deoxynivalenol[J]. Toxicology in Vitro, 2020, 66: 104837. doi: 10.1016/j.tiv.2020.104837.

    [39]

    KOWALSKA K, KOZIEŁ M J, HABROWSKA-GóRCZYŃSKA D E, et al. Deoxynivalenol induces apoptosis and autophagy in human prostate epithelial cells via PI3K/Akt signaling pathway[J]. Archives of Toxicology, 2022, 96(1): 231-241. doi: 10.1007/s00204-021-03176-z

    [40]

    CAO L, JIANG Y J, ZHU L, et al. Deoxynivalenol induces caspase-8-mediated apoptosis through the mitochondrial pathway in hippocampal nerve cells of piglet[J]. Toxins, 2021, 13(2): 73. doi: 10.3390/toxins13020073.

    [41]

    WANG X C, FAN M X, CHU X Y, et al. Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway[J]. Toxicon, 2018, 155: 1-8. doi: 10.1016/j.toxicon.2018.09.006

    [42]

    YANG J H, WANG J H, GUO W B, et al. Toxic effects and possible mechanisms of deoxynivalenol exposure on sperm and testicular damage in BALB/c mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2289-2295. doi: 10.1021/acs.jafc.8b04783

    [43]

    YU M, WEI Z Y, XU Z H, et al. Oxidative damage and Nrf2 translocation induced by toxicities of deoxynivalenol on the placental and embryo on gestation day 12.5 d and 18.5 d[J]. Toxins, 2018, 10(9): 370. doi: 10.3390/toxins10090370.

    [44]

    VIGNAL C, DJOUINA M, PICHAVANT M, et al. Chronic ingestion of deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice[J]. Archives of Toxicology, 2018, 92(7): 2327-2338. doi: 10.1007/s00204-018-2228-6

    [45]

    MARCHESI J R, ADAMS D H, FAVA F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut, 2016, 65(2): 330-339. doi: 10.1136/gutjnl-2015-309990

    [46]

    HE X L, ZENG Q, PUTHIYAKUNNON S, et al. Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense[J]. Scientific Reports, 2017, 7: 43305. doi: 10.1038/srep43305.

    [47]

    REN C C, DOKTER-FOKKENS J, FIGUEROA LOZANO S, et al. Lactic acid bacteria may impact intestinal barrier function by modulating goblet cells[J]. Molecular Nutrition & Food Research, 2018, 62(6): e1700572. doi: 10.1002/mnfr.201700572.

    [48]

    GARCíA G R, PAYROS D, PINTON P, et al. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants[J]. Archives of Toxicology, 2017, 92(2): 983-993.

    [49]

    BAI Y S, MA K D, LI J B, et al. Deoxynivalenol exposure induces liver damage in mice: Inflammation and immune responses, oxidative stress, and protective effects of Lactobacillus rhamnosus GG[J]. Food and Chemical Toxicology, 2021, 156: 112514. doi: 10.1016/j.fct.2021.112514.

    [50]

    MA K D, BAI Y S, LI J B, et al. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets[J]. Food & Function, 2022, 13(7): 3905-3916.

    [51]

    WU S R, LIU Y L, DUAN Y L, et al. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens[J]. Journal of Animal Science and Biotechnology, 2018, 9: 74. doi: 10.1186/s40104-018-0286-5.

    [52]

    MAIDANA L G, GEREZ J, HOHMANN M N S, et al. Lactobacillus plantarum metabolites reduce deoxynivalenol toxicity on jejunal explants of piglets[J]. Toxicon, 2021, 203: 12-21. doi: 10.1016/j.toxicon.2021.09.023

    [53]

    LI X Y, GUO Y P, ZHAO L H, et al. Protective effects of Devosia sp. ANSB714 on growth performance, immunity function, antioxidant capacity and tissue residues in growing-finishing pigs fed with deoxynivalenol contaminated diets[J]. Food and Chemical Toxicology, 2018, 121: 246-251. doi: 10.1016/j.fct.2018.09.007

    [54]

    QIN T, LIU X P, LUO Y, et al. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress[J]. International Journal of Biological Macromolecules, 2020, 152: 1265-1273. doi: 10.1016/j.ijbiomac.2019.10.223

    [55]

    RAJPUT S A, LIANG S J, WANG X Q, et al. Lycopene protects intestinal epithelium from deoxynivalenol-induced oxidative damage via regulating Keap1/Nrf2 signaling[J]. Antioxidants, 2021, 10(9): 1493. doi: 10.3390/antiox10091493.

    [56]

    AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clinical and Experimental Pharmacology & Physiology, 2021, 48(3): 389-400.

    [57]

    YANG J, ZHU C, YE J L, et al. Protection of porcine intestinal-epithelial cells from deoxynivalenol-induced damage by resveratrol via the Nrf2 signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(6): 1726-1735. doi: 10.1021/acs.jafc.8b03662

    [58]

    ZHANG J, WANG J M, FANG H T, et al. Pterostilbene inhibits deoxynivalenol-induced oxidative stress and inflammatory response in bovine mammary epithelial cells[J]. Toxicon, 2021, 189: 10-18. doi: 10.1016/j.toxicon.2020.11.002

    [59]

    WAN M L Y, TURNER P C, CO V A, et al. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation[J]. Scientific Reports, 2019, 9: 19173. doi: 10.1038/s41598-019-55821-4.

    [60]

    WANG X J, LI L, ZHANG G Y. Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation[J]. RSC Advances, 2019, 9(59): 34607-34616. doi: 10.1039/C9RA06222J

    [61]

    XU X X, CHANG J, WANG P, et al. Effect of chlorogenic acid on alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111376. doi: 10.1016/j.ecoenv.2020.111376.

    [62]

    TANG M, YUAN D X, LIAO P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets[J]. Environmental Pollution, 2021, 289: 117865. doi: 10.1016/j.envpol.2021.117865.

    [63]

    LIAO P, LI Y H, LI M J, et al. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets[J]. Food and Chemical Toxicology, 2020, 140: 111326. doi: 10.1016/j.fct.2020.111326.

    [64]

    WANG X M, ZUO Z C, ZHAO C P, et al. Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol[J]. Environmental Toxicology and Pharmacology, 2016, 47: 53-61. doi: 10.1016/j.etap.2016.09.003

    [65]

    SHIEH P, HSU S S, LIANG W Z. Mechanisms underlying protective effects of vitamin E against mycotoxin deoxynivalenol-induced oxidative stress and its related cytotoxicity in primary human brain endothelial cells[J]. Environmental Toxicology, 2021, 36(7): 1375-1388. doi: 10.1002/tox.23133

    [66]

    LIAO S M, LIU G, TAN B, et al. Fullerene C60 protects against intestinal injury from deoxynivalenol toxicity by improving antioxidant capacity[J]. Life, 2021, 11(6): 491. doi: 10.3390/life11060491.

    [67]

    ZHOU J Y, LIN H L, QIN Y C, et al. L-carnosine protects against deoxynivalenol-induced oxidative stress in intestinal stem cells by regulating the Keap1/Nrf2 signaling pathway[J]. Molecular Nutrition & Food Research, 2021, 65(17): e2100406. doi: 10.1002/mnfr.202100406.

    [68]

    WANG S, ZHANG C, YANG J C, et al. Sodium butyrate protects the intestinal barrier by modulating intestinal host defense peptide expression and gut microbiota after a challenge with deoxynivalenol in weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4515-4527. doi: 10.1021/acs.jafc.0c00791

    [69]

    XIAO K, LIU C C, QIN Q, et al. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway[J]. FASEB Journal, 2020, 34(2): 2483-2496. doi: 10.1096/fj.201902298R

    [70]

    XUE R F, LI S H, ZOU H J, et al. Melatonin alleviates deoxynivalenol-induced apoptosis of human granulosa cells by reducing mutually accentuated FOXO1 and ER stress[J]. Biology of Reproduction, 2021, 105(2): 554-566. doi: 10.1093/biolre/ioab084

    [71]

    SOBROVA P, ADAM V, VASATKOVA A, et al. Deoxynivalenol and its toxicity[J]. Interdiscip Toxicol, 2010, 3(3): 94-99.

    [72]

    KABAK B, DOBSON A D W, VAR I. Strategies to prevent mycotoxin contamination of food and animal feed: A review[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(8): 593-619. doi: 10.1080/10408390500436185

    [73]

    XU H W, WANG L Z, SUN J D, et al. Microbial detoxification of mycotoxins in food and feed[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(18): 4951-4969. doi: 10.1080/10408398.2021.1879730

    [74]

    ERIKSEN G S, PETTERSSON H, LUNDH T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites[J]. Food and Chemical Toxicology, 2004, 42(4): 619-624. doi: 10.1016/j.fct.2003.11.006

    [75]

    FUCHS E, BINDER E M, HEIDLER D, et al. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797[J]. Food Additives and Contaminants, 2002, 19(4): 379-386. doi: 10.1080/02652030110091154

    [76]

    LI F C, WANG J Q, HUANG L B, et al. Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat[J]. Toxins, 2017, 9(12): 383. doi: 10.3390/toxins9120383.

    [77]

    LI X Z, ZHU C, DE LANGE C F M, et al. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance[J]. Food Additives & Contaminants: Part A, 2011, 28(7): 894-901.

    [78]

    GAO X J, MU P Q, WEN J K, et al. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9[J]. Food and Chemical Toxicology, 2018, 112: 310-319. doi: 10.1016/j.fct.2017.12.066

    [79]

    GAO X J, MU P Q, ZHU X H, et al. Dual function of a novel bacterium, Slackia sp. D-G6: Detoxifying deoxynivalenol and producing the natural estrogen analogue, equol[J]. Toxins, 2020, 12(2): 85. doi: 10.3390/toxins12020085.

    [80]

    HE W J, SHI M M, YANG P, et al. Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions[J]. Toxins, 2020, 12(6): 363. doi: 10.3390/toxins12060363.

    [81]

    SHIMA J, TAKASE S, TAKAHASHI Y, et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J]. Applied and Environmental Microbiology, 1997, 63(10): 3825-3830. doi: 10.1128/aem.63.10.3825-3830.1997

    [82]

    ZHANG J, QIN X J, GUO Y P, et al. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101[J]. Food and Chemical Toxicology, 2020, 140: 111276. doi: 10.1016/j.fct.2020.111276.

    [83]

    QIN X J, ZHANG J, LIU Y R, et al. A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol[J]. Food Control, 2022, 136: 108834. doi: 10.1016/j.foodcont.2022.108834.

    [84] 唐语谦, 潘药银, 刘晨迪, 等. 脱氧雪腐镰刀菌烯醇的生物转化及其隐蔽型毒素的形成研究进展[J]. 食品科学, 2020, 41(19): 281-288. doi: 10.7506/spkx1002-6630-20190908-104
    [85]

    HE J W, HASSAN Y I, PERILLA N, et al. Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions[J]. Frontiers in Microbiology, 2016, 7: 572. doi: 10.3389/fmicb.2016.00572.

    [86]

    CARERE J, HASSAN Y I, LEPP D, et al. The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway[J]. Microbial Biotechnology, 2018, 11(6): 1106-1111. doi: 10.1111/1751-7915.12874

    [87]

    CARERE J, HASSAN Y I, LEPP D, et al. The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8[J]. Frontiers in Microbiology, 2018, 9: 1573. doi: 10.3389/fmicb.2018.01573.

    [88]

    HE W J, SHI M M, YANG P, et al. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain[J]. Food Chemistry, 2020, 321: 126703. doi: 10.1016/j.foodchem.2020.126703.

    [89]

    HE W J, ZHANG L, YI S Y, et al. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain[J]. Scientific Reports, 2017, 7(1): 9549. doi: 10.1038/s41598-017-08799-w.

    [90]

    WANG Y, ZHANG H, ZHAO C, et al. Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil[J]. Letters in Applied Microbiology, 2017, 65(5): 414-422. doi: 10.1111/lam.12790

    [91]

    IKUNAGA Y, SATO I, GROND S, et al. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol[J]. Applied Microbiology and Biotechnology, 2011, 89(2): 419-427. doi: 10.1007/s00253-010-2857-z

    [92]

    WILSON N M, MCMASTER N, GANTULGA D, et al. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples[J]. Toxins, 2017, 9(4): 141. doi: 10.3390/toxins9040141.

    [93]

    ZHANG H H, ZHANG H, QIN X, et al. Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-deoxynivalenol and 3-epi-deoxynivalenol as intermediate products[J]. Frontiers in Microbiology, 2021, 12: 658421. doi: 10.3389/fmicb.2021.658421.

  • 期刊类型引用(2)

    1. 赵岩,祝文慧,赵晓军,殷辉,任璐,周建波. 不同诱孢方法对辣椒疫霉菌孢子囊消长动态的影响. 山西农业科学. 2023(04): 400-405 . 百度学术
    2. 孔广辉,冯迪南,李雯,连帅利,习平根,姜子德. 荔枝霜疫病的研究进展. 果树学报. 2021(04): 603-612 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  160
  • HTML全文浏览量:  97
  • PDF下载量:  484
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-08-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回