Biological characteristics of pathogenic anthracnose Colletotrichum fioriniae on Rhododendron delavayi and screening of fungicides
-
摘要:目的
探明贵州百里杜鹃自然保护区马缨杜鹃Rhododendron delavayi炭疽病菌Colletotrichum fioriniae生物学特性,并筛选出有效药剂。
方法采用菌丝生长速率法测定马缨杜鹃炭疽病菌生物学特性;选用二氰蒽醌、吡唑醚菌酯、 溴菌腈、丙环唑、苯醚甲环唑、肟菌·戊唑醇、四霉素、乙蒜素、蛇床子素及宁南霉素对该病原菌的室内毒力进行测定;选择作用机制不同、抑菌活性较高的2种药剂按不同比例复配,测定其对马缨杜鹃炭疽病菌菌丝的联合毒力。
结果病原菌在5~35 ℃、pH 5~11均能生长,最适温度为25 ℃,最适生长pH为8,最适碳源为葡萄糖和可溶性淀粉,最适氮源为蛋白胨,最适培养基为PSA。室内毒力测定结果表明,所选药剂对病原菌菌丝生长均有一定抑制作用,其中,肟菌·戊唑醇、吡唑醚菌酯、四霉素、苯醚甲环唑和丙环唑抑制效果较好,EC50分别为0.102、0.118、1.107、1.202和2.101 mg/L;其次为蛇床子素,EC50为6.803 mg/L。选用四霉素与苯醚甲环唑进行混配,结果表明不同配比对病原菌的联合毒力较单剂均具有协同增效作用,增效最佳配比为7 ∶ 3,共毒系数(Co-toxicity coeffecient, CTC)达584.56,明显高于其他配比;配比为6 ∶ 4和8 ∶ 2 时,对应CTC均在500以上,仅次于最佳配比。
结论马缨杜鹃炭疽病菌的生长受温度、pH、培养基成分、碳氮源影响明显。四霉素和苯醚甲环唑不同比例复配活性增效明显,可选择7 ∶ 3复配比例进行田间防治。
Abstract:ObjectiveTo investigate the biological characteristics of Colletotrichum fioriniae on Rhododendron delavayi in Baili Azalea Nature Reserve of Guizhou Province, and to screen effective fungicides for disease control.
MethodThe mycelial growth rate method was applied to explore the biological characteristics of C. fioriniae on R. delavayi. The indoor toxicity of pathogen was determined using 10 fungicides, including trifloxystrobin·tebuconazole, pyraclostrobin, difenoconazole, propiconazole, bromothalonil, dithianon, tetramycin, ethylicin, cnidiadin and ningnanmycin. Combined toxicity of two fungicides with high antifungal activities and different toxicological mechanisms to C. fioriniae was assessed in different mixture ratio.
ResultThe pathogenic fungi could grow under 5−35 ℃ and pH 5−11. The optimum temperature was 25 ℃ and the optimum pH was 8. The best carbon sources were glucose and soluble starch. Peptone was the best nitrogen source for the pathogen growth and the growth rate reached the maximum on PSA medium. The results of the indoor toxicity test indicated that all of the 10 fungicides inhibited the mycelial growth of the pathogen to some extent. Among 10 fungicides, trifloxystrobin·tebuconazole, pyraclostrobin, tetramycin, difenoconazole, and propiconazole had better inhibitory effect with EC50 of 0.102, 0.118, 1.107, 1.202 and 2.101 mg/L, respectively, followed by cnidiadin with EC50 of 6.803 mg/L. The combination of tetramycin and difenoconazole with different mixture ratio showed synergistic inhibiting effect on the pathogen compared with single fungicide. The optimal mixture ratio was 7∶3 with co-toxicity coefficient (CTC) of 584.56, which was obviously higher than those of other mixture ratios. Both the mixture ratio of 6∶4 and 8∶2 had CTC above 500, being next to the best ratio.
ConclusionThe growth of C. fioriniae is significantly affected by temperature, pH, culture medium, carbon and nitrogen sources. The combination of tetramycin and difenoconazole in different mixture ratios has obvious synergistic toxicity, and the 7∶3 mixture ratio can be selected for field control experiments.
-
图 1 不同培养基(A)、温度(B)和pH(C)对马缨杜鹃炭疽病菌菌丝生长的影响
各图中,柱子上方不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
Figure 1. Effects of different culture medium, temperature and pH on mycelial growth of Colletotrichum fioriniae on Rhododendron delavayi
In each diagram, different lowercase letters on the columns indicate significant differences (P<0.05,Duncan’s method)
表 1 碳、氮源对马缨杜鹃炭疽病菌菌丝生长的影响1)
Table 1 Effects of carbon and nitrogen sources on mycelial growth of Colletotrichum fioriniae on Rhododendron delavayi
碳源
Carbon source菌落直径/cm
Diameter of colony氮源
Nitrogen source菌落直径/cm
Diameter of colony对照 CK 3.49±0.16c 对照 CK 3.02±0.11d 葡萄糖 Glucose 5.72±0.15a 蛋白胨 Peptone 7.63±0.12a 可溶性淀粉 Soluble starch 5.59±0.02a 硝酸钾 Potassium nitrate 6.08±0.26b 果糖 Fructose 3.99±0.18b 硝酸钠 Sodium nitrate 5.05±0.08c 麦芽糖 Maltose 3.65±0.31bc 硫酸铵 Ammonium sulfate 1.75±0.39e 乳糖 Lactose 3.05±0.24d 磷酸二氢铵 Ammonium dihydrogen phosphate 2.81±0.18d 1)同列数据后不同小写字母表示处理间差异显著 (P< 0.05,Duncan’s法)
1) Different lowercase letters in the same column indicate significant differences(P< 0.05, Duncan’s method)表 2 10 种杀菌剂对马缨杜鹃炭疽病菌的抑菌活性
Table 2 Antibiotic activities of 10 fungicides to Colletotrichum fioriniae on Rhododendron delavayi
供试药剂
Trial fungicidew(有效成分)/%
Mass concentration of
the active ingredients毒力回归方程1)
Toxicity regression
equationEC502)/(mg·L−1) 相关系数
Correlation
coefficient肟菌·戊唑醇
Trifloxystrobin·tebuconazole75.0 y=0.6232x+7.5465 0.102±0.021a 0.9802 吡唑醚菌酯
Pyraclostrobin25.0 y=0.6906x+7.9656 0.118±0.012a 0.9642 苯醚甲环唑
Difenoconazole10.0 y=0.5163x+6.5124 1.202±0.037ab 0.9998 丙环唑
Propiconazole50.0 y=0.9880x+7.6430 2.101±0.099a 0.9898 溴菌腈
Bromothalonil25.0 y=1.4748x+6.5053 95.402±1.718e 0.9890 二氰蒽醌
Dithianon22.7 y=0.8520x+5.6021 196.501±5.117f 0.9931 四霉素
Tetramycin0.3 y=0.8794x+7.6164 1.107±0.015a 0.9970 乙蒜素
Ethylicin80.0 y=1.4409x+6.5599 82.711±2.597d 0.9850 蛇床子素
Cnidiadin1.0 y=1.2111x+7.6279 6.803±0.147b 0.9913 宁南霉素
Ningnanmycin8.0 y=0.5785x+5.6878 64.712±1.124c 0.9350 1)x:杀菌剂浓度的对数;y:杀菌剂对马缨杜鹃炭疽病菌的抑制率;2)同列数据后不同小写字母表示处理间差异显著 (P< 0.05,Duncan’s法)
1) x: Logarithm of fungicide concentration; y: Inhibition rate of fungicide against Colletotrichum fiorinia on Rhododendron delavayi; 2) Different lowercase letters in the same column indicate significant differences (P< 0.05, Duncan’s method)表 3 四霉素与苯醚甲环唑不同配比混剂对马缨杜鹃炭疽病菌的毒力
Table 3 Bioactivities of mixtures containing different ratios of tetramycin and difenoconazole against Colletotrichum fioriniae on Rhododendron delavayi
V(四霉素)∶V(苯醚甲环唑)
V (Tetramycin)∶V(Difenoconazole)毒力回归方程1)
Toxicity regression equation相关系数
Correlation coefficientEC502)/(mg·L−1) 共毒系数
Co-toxicity coefficient9∶1 y=1.0766x+5.4695 0.9992 0.3664±0.011e 302.51 8∶2 y=1.0903x+5.7206 0.9982 0.2183±0.020b 511.49 7∶3 y=0.8994x+5.6426 0.9889 0.1930±0.015a 584.56 6∶4 y=0.9324x+5.6378 0.9978 0.2070±0.028ab 549.23 5∶5 y=1.1314x+5.6421 0.9888 0.2707±0.027c 423.58 4∶6 y=0.9365x+5.4386 0.9984 0.3401±0.019d 339.93 3∶7 y=0.8895x+5.3829 0.9894 0.3711±0.021e 314.25 2∶8 y=0.9220x+5.4090 0.9956 0.3601±0.014de 326.69 1∶9 y=1.1020x+5.4110 0.9984 0.4237±0.022f 279.91 1) x:杀菌剂浓度的对数;y:杀菌剂对马缨杜鹃炭疽病菌的抑制率;2)同列数据后不同小写字母表示不同处理间差异显著 (P< 0.05,Duncan’s法)
1) x: Logarithm of fungicide concentration; y: Inhibition rate of fungicide against Colletotrichum fiorinia on Rhododendron delavayi; 2) Different lowercase letters in the same column indicate significant differences (P< 0.05, Duncan’s method) -
[1] 杨成华, 李贵远, 邓伦秀, 等. 贵州百里杜鹃保护区的杜鹃属植物种类及其观赏特性研究[J]. 西部林业科学, 2006, 35(4): 14-18. doi: 10.3969/j.issn.1672-8246.2006.04.002 [2] CAI Y F, WANG J H, LI S F, et al. Photosynthetic response of an alpine plant, Rhododendron delavayi Franch, to water stress and recovery: The role of mesophyll conductance[J]. Frontiers in Plant Science, 2015, 6: 1089.
[3] ZHANG L, XU P W, CAI Y F, et al. The draft genome assembly of Rhododendron delavayi Franch. var. delavayi[J]. Gigascience, 2017, 6(10): gix076. doi: 10.1093/gigascience/gix076.
[4] 杨秀梅, 瞿素萍, 张宝琼, 等. 高山杜鹃枯梢病病原菌鉴定及品种抗病性调查[J]. 园艺学报, 2019, 46(5): 923-930. doi: 10.16420/j.issn.0513-353x.2018-0467 [5] 杨秀梅, 唐艺榕, 李进昆, 等. 杜鹃炭疽病病原鉴定及其生物学特性研究[J]. 江西农业学报, 2018, 30(3): 74-77. doi: 10.19386/j.cnki.jxnyxb.2018.03.15 [6] WANG P H, TSAO C C, PAI T Y. Exobasidium japonicum inhabits in node strategically during summer in Rhododendron[J]. Sydowia-Horn, 2014, 66(2): 325-334.
[7] 童俊, 毛静, 周媛, 等. 武汉地区杜鹃花主要病虫害调查研究[J]. 现代农业科技, 2021(5): 115-117. doi: 10.3969/j.issn.1007-5739.2021.05.049 [8] 刘浩凯, 张辉, 陈玲芳, 等. 浙江景宁云锦杜鹃叶斑病病原菌鉴定及生物学特征研究[J]. 浙江林业科技, 2020, 40(2): 9-16. doi: 10.3969/j.issn.1001-3776.2020.02.002 [9] 胡芳菲. 吉安市苗圃几种常见树木病害及防治[J]. 园艺与种苗, 2021, 41(11): 51-52. doi: 10.16530/j.cnki.cn21-1574/s.2021.11.019 [10] 陈明珠, 丁海霞, 刘国琴, 等. 锦绣杜鹃叶肿病菌鉴定及病原菌培养代谢产物的初步分析[J]. 植物病理学报, 2021, 51(6): 1005-1010. doi: 10.13926/j.cnki.apps.000486 [11] 任纬恒. 高山杜鹃病害的病原菌分离鉴定与防治基础研究[D]. 贵阳: 贵州师范大学, 2019: 33-45. [12] HU S, PENG L J, DING H X, et al. First report of Colletotrichum fioriniae causing anthracnose on Rhododendron delavayi in China[J]. Plant Disease, 2022, 106(11): 2995.
[13] 方中达. 植病研究方法 [M]. 3版. 北京: 中国农业出版社. 1998: 140-141. [14] SUN Y P, JOHNSON E R. Analysis of joint action of insecticides against house flies[J]. Journal of Economic Entomology, 1960, 53(5): 887-892. doi: 10.1093/jee/53.5.887
[15] BARONCELLI R, SARROCCO S, ZAPPARATA A, et al. Characterization and epidemiology of Colletotrichum acutatum sensu lato (C. chrysanthemi) causing Carthamus tinctorius anthracnose[J]. Plant Pathology, 2015, 64(2): 375-384. doi: 10.1111/ppa.12268
[16] 张琳, 彭琳, 邵郅伟, 等. 南瓜炭疽病菌Colletotrichum brevisporum生物学特性及药剂防治[J]. 植物保护, 2021, 47(4): 59-65. [17] 黄蔚, 崔丽红, 谢王超, 等. 西瓜新炭疽病病原菌分子鉴定及其生物学特性初探[J]. 中国农学通报, 2022, 38(1): 131-136. doi: 10.11924/j.issn.1000-6850.casb2021-0077 [18] 曹尚, 张欢, 贺明阳, 等. 高粱炭疽病菌Colletotrichum sublineola 生物学特性研究[J]. 东北农业科学, 2022, 47(6): 85-88. [19] 宋慧云, 段志豪, 张伟豪, 等. 宫粉羊蹄甲炭疽病病原鉴定及其药剂筛选[J]. 南方农业学报, 2018, 49(10): 1975-1981. [20] 冉飞, 陈佳, 莫飞旭, 等. 百香果炭疽病菌生物学特性及室内药剂筛选[J]. 热带作物学报, 2021, 42(4): 1080-1085. doi: 10.3969/j.issn.1000-2561.2021.04.025 [21] 孟珂, 张亚波, 常君, 等. 8种杀菌剂对9种薄壳山核桃炭疽病病原菌的毒力测定[J]. 林业科学研究, 2021, 34(1): 153-164. doi: 10.13275/j.cnki.lykxyj.2021.01.019 [22] YUN Y Z, YU F W, WANG N, et al. Sensitivity to silthiofam, tebuconazole and difenoconazole of Gaeumannomyces graminis var. tritici isolates from China[J]. Pest Management Science, 2012, 68(8): 1156-1163. doi: 10.1002/ps.3277
[23] WANG Q P, ZHANG C, LONG Y H, et al. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases[J]. Antibiotics (Basel), 2021, 10(3): 289.
[24] 王晓琳, 邬劼, 黄洁雪, 等. 四霉素与丙硫菌唑复配对草莓炭疽病菌的增效作用[J]. 江苏农业科学, 2021, 49(10): 91-95. doi: 10.15889/j.issn.1002-1302.2021.10.017 [25] 韦薇, 覃义杰, 和立连, 等. 苯醚甲环唑和代森锰锌复配对柑桔炭疽病菌的毒力及防治效果[J]. 中国南方果树, 2021, 50(4): 22-25. doi: 10.13938/j.issn.1007-1431.20200812 [26] 贤小勇, 朱桂宁, 林珊宇, 等. 吡唑醚菌酯与苯醚甲环唑对核桃炭疽病菌的联合毒力及林间防治效果[J]. 南方农业学报, 2021, 52(6): 1633-1640.