基于深度强化学习的柑橘采摘机械臂路径规划方法

    熊春源, 熊俊涛, 杨振刚, 胡文馨

    熊春源, 熊俊涛, 杨振刚, 等. 基于深度强化学习的柑橘采摘机械臂路径规划方法[J]. 华南农业大学学报, 2023, 44(3): 473-483. DOI: 10.7671/j.issn.1001-411X.202206024
    引用本文: 熊春源, 熊俊涛, 杨振刚, 等. 基于深度强化学习的柑橘采摘机械臂路径规划方法[J]. 华南农业大学学报, 2023, 44(3): 473-483. DOI: 10.7671/j.issn.1001-411X.202206024
    XIONG Chunyuan, XIONG Juntao, YANG Zhengang, et al. Path planning method for citrus picking manipulator based on deep reinforcement learning[J]. Journal of South China Agricultural University, 2023, 44(3): 473-483. DOI: 10.7671/j.issn.1001-411X.202206024
    Citation: XIONG Chunyuan, XIONG Juntao, YANG Zhengang, et al. Path planning method for citrus picking manipulator based on deep reinforcement learning[J]. Journal of South China Agricultural University, 2023, 44(3): 473-483. DOI: 10.7671/j.issn.1001-411X.202206024

    基于深度强化学习的柑橘采摘机械臂路径规划方法

    基金项目: 国家自然科学基金(32071912);广州市基础研究计划(202102080337)
    详细信息
      作者简介:

      熊春源,硕士研究生,主要从事采摘机器人研究,E-mail: 20203165015@stu.scau.edu.cn

      通讯作者:

      熊俊涛,教授,博士,主要从事智慧农业方向研究,E-mail: xiongjt2340@163.com

    • 中图分类号: S666;S233.4

    Path planning method for citrus picking manipulator based on deep reinforcement learning

    • 摘要:
      目的 

      为解决非结构化环境下采用深度强化学习进行采摘机械臂路径规划时存在的效率低、采摘路径规划成功率不佳的问题,提出了一种非结构化环境下基于深度强化学习(Deep reinforcement learning, DRL)和人工势场的柑橘采摘机械臂的路径规划方法。

      方法 

      首先,通过强化学习方法进行采摘路径规划问题求解,设计了结合人工势场的强化学习方法;其次,引入长短期记忆(Longshort term memory,LSTM)结构对2种DRL算法的Actor网络和Critic网络进行改进;最后,在3种不同的非结构化柑橘果树环境训练DRL算法对采摘机械臂进行路径规划。

      结果 

      仿真对比试验表明:结合人工势场的强化学习方法有效提高了采摘机械臂路径规划的成功率;引入LSTM结构的方法可使深度确定性策略梯度(Deep deterministic policy gradient,DDPG)算法的收敛速度提升57.25%,路径规划成功率提升23.00%;使软行为评判(Soft actor critic,SAC)算法的收敛速度提升53.73%,路径规划成功率提升9.00%;与传统算法RRT-connect(Rapidly exploring random trees connect)对比,引入LSTM结构的SAC算法使规划路径长度缩短了16.20%,路径规划成功率提升了9.67%。

      结论 

      所提出的路径规划方法在路径规划长度、路径规划成功率方面存在一定优势,可为解决采摘机器人在非结构化环境下的路径规划问题提供参考。

      Abstract:
      Objective 

      In order to solve the problems of poor training efficiency and low success rate of picking path planning of manipulator using deep reinforcement learning (DRL), this study proposed a path planning method combined with DRL and artificial potential field for citrus picking manipulator in unstructured environments.

      Method 

      Firstly, the picking path planning problem was solved by the DRL with artificial potential field method. Secondly, the longshort term memory (LSTM) structure was introduced to improve the Actor network and Critic network of two DRL algorithms. Finally, the DRL algorithms were trained in three different unstructured citrus growing environments to perform path planning for picking manipulator.

      Result 

      The comparison of simulation experiments showed that the success rate of path planning was effectively improved by combining DRL with the artificial potential field method, the method with LSTM structure improved the convergence speed of the deep deterministic policy gradient (DDPG) algorithm by 57.25% and the success rate of path planning by 23.00%. Meanwhile, the method improved the convergence speed of the soft actor critic (SAC) algorithm by 53.73% and the path planning success rate by 9.00%. Compared with the traditional algorithm RRT-connect (Rapidly exploring random trees connect), the SAC algorithm with LSTM structure shortened the planned path length by 16.20% and improved the path planning success rate by 9.67%.

      Conclusion 

      The proposed path planning method has certain advantages for path planning length and path planning success rate, which can provide references for solving path planning problems of picking robots in unstructured environments.

    • 图  1   采摘机械臂

      θ:关节角;d:关节偏移量;a:连杆长度;α:连杆扭转角;xyz:机器人坐标系,其中,蓝色坐标系为机械臂的原点和末端坐标系,黑色坐标系为关节坐标系

      Figure  1.   Picking manipulator

      θ: Joint angle; d: Joint distance; a: Link length; α: Link twist angle; xyz: Robot coordinate system, in which the blue coordinate system is the origin and end coordinate system of the manipulator, and the black coordinate system is the joint coordinate system

      图  2   碰撞检测模型

      Figure  2.   Collision test model

      图  3   果实区域

      Pg:采摘点,O:果实区域原点,rO:果实区域半径,r:径向距离,φ:方位角,ρ:极角

      Figure  3.   Fruits space

      Pg: Picking point, O: Origin point of fruits space, rO: Radius of fruits space, r: Radial distance, φ: Azimuth angle, ρ: Polar angle

      图  4   二维采摘平面

      γ:采摘平面,$ {p_i} $:枝干横截面中心点,$ {p_{\rm{e}}} $:末端执行器,$ {p_{\rm{r}}} $:线段$ {p_i}{p_{\rm{e}}} $与横截面的交点,$ \overrightarrow {{p_{\rm{r}}}{p_{\rm{e}}}} $:采摘平面法向量,$ \overrightarrow {{p_{\rm{e}}}{p_{\rm{r}}}} $:采摘平面法向量(方向与$ \overrightarrow {{p_{\rm{r}}}{p_{\rm{e}}}} $相反)

      Figure  4.   2D picking plane

      γ: Picking plane, $ {p_i} $: Center point of branch cross section, $ {p_{\rm{e}}} $: End effector, $ {p_{\rm{r}}} $: Intersection of line segment $ {p_i}{p_{\rm{e}}} $ and cross section, $ \overrightarrow {{p_{\rm{r}}}{p_{\rm{e}}}} $: Normal vector of picking plane, $ \overrightarrow {{p_{\rm{e}}}{p_{\rm{r}}}} $: Normal vector of picking plane(opposite direction to $ \overrightarrow {{p_{\rm{r}}}{p_{\rm{e}}}} $)

      图  5   非结构化环境中的采摘测试

      Figure  5.   Picking test in unstructured environment

      图  6   强化学习流程

      Figure  6.   Process of reinforcement learning

      图  7   DDPG网络结构

      Figure  7.   DDPG network structure

      图  8   SAC网络结构

      Figure  8.   SAC network structure

      图  9   LSTM-actor网络与LSTM-critic网络结构

      Figure  9.   LSTM-actor network and LSTM-critic network structure

      图  10   不同方法与环境下的试验结果

      Figure  10.   Experiment results of different methods and environments

      图  11   不同环境下算法的训练结果

      Figure  11.   Training results of algorithms in different environments

      表  1   采摘机械臂D-H参数1)

      Table  1   D-H parameters of picking manipulator

      关节编号 Joint No. θ d/m a/m α/(°)
      1 $ {\theta _1} $ 0.22 0 90
      2 $ {\theta _2} $ 0 0.38 180
      3 $ {\theta _3} $ 0 0 90
      4 $ {\theta _{\text{4}}} $ 0.42 0 −90
      5 $ {\theta _{\text{5}}} $ 0 0 90
      6 $ {\theta _{\text{6}}} $ 0.4 0 0
       1)θ:关节角,d:关节偏移量,a:连杆长度,α:连杆扭转角  1)θ: Joint angle, d: Joint distance, a: Link length, α: Link twist angle
      下载: 导出CSV

      表  2   不同算法在3种环境中的试验结果1)

      Table  2   Experiment results of different algorithms in three environments

      环境 Environment 算法 Algorithm t/s l/m 成功率/% Success rate
      A LSTM-SAC 0.03 0.721 96
      LSTM-DDPG 0.03 0.764 80
      SAC 0.05 1.237 90
      DDPG 0.05 1.432 58
      RRT-connect 7.28 0.813 90
      RRT 11.36 0.896 85
      B LSTM-SAC 0.04 1.103 93
      LSTM-DDPG 0.04 1.864 72
      SAC 0.06 2.034 88
      DDPG 0.07 2.339 57
      RRT-connect 9.64 1.337 81
      RRT 17.32 1.431 77
      C LSTM-SAC 0.04 0.793 95
      LSTM-DDPG 0.04 0.937 76
      SAC 0.06 1.361 79
      DDPG 0.07 1.581 44
      RRT-connect 8.72 0.973 84
      RRT 16.56 1.038 81
       1) t:平均规划耗时;l:路径平均长度  1) t: Average planning time; l: Average path length
      下载: 导出CSV
    • [1] 常有宏, 吕晓兰, 蔺经, 等. 我国果园机械化现状与发展思路[J]. 中国农机化学报, 2013, 34(6): 21-26. doi: 10.3969/j.issn.2095-5553.2013.06.007
      [2] 徐丹琦. 基于kinect相机的自然生长状态下果树枝干的三维构建[D]. 桂林: 广西师范大学, 2021.
      [3] 崔永杰, 王寅初, 何智, 等. 基于改进RRT算法的猕猴桃采摘机器人全局路径规划[J]. 农业机械学报, 2022, 53(6): 151-158.
      [4] 张勤, 乐晓亮, 李彬, 等. 基于CTB-RRT~*的果蔬采摘机械臂运动路径规划[J]. 农业机械学报, 2021, 52(10): 129-136. doi: 10.6041/j.issn.1000-1298.2021.10.013
      [5] 王怀震, 高明, 王建华, 等. 基于改进RRT~*-Connect算法的机械臂多场景运动规划[J]. 农业机械学报, 2022, 53(4): 432-440.
      [6] 马宇豪, 梁雁冰. 一种基于六次多项式轨迹规划的机械臂避障算法[J]. 西北工业大学学报, 2020, 38(2): 392-400. doi: 10.3969/j.issn.1000-2758.2020.02.021
      [7] 贾庆轩, 陈钢, 孙汉旭, 等. 基于A*算法的空间机械臂避障路径规划[J]. 机械工程学报, 2010, 46(13): 109-115.
      [8] 张敦凤, 赵皓, 徐亮, 等. 基于栅格法的机械臂工作空间解析方法研究[J]. 制造业自动化, 2019, 41(4): 69-70.
      [9] 张强, 陈兵奎, 刘小雍, 等. 基于改进势场蚁群算法的移动机器人最优路径规划[J]. 农业机械学报, 2019, 50(5): 23-32.
      [10] 刘可, 李可, 宿磊, 等. 基于蚁群算法与参数迁移的机器人三维路径规划方法[J]. 农业机械学报, 2020, 51(1): 29-36. doi: 10.6041/j.issn.1000-1298.2020.01.003
      [11]

      KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]// COX I J, WILFONG G T. Autonomous robot vehicles. New York: Springer, 1986: 396-404.

      [12] 史亚飞, 张力, 刘子煊, 等. 基于速度场的人工势场法机械臂动态避障研究[J]. 机械传动, 2020, 44(4): 38-44.
      [13]

      WANG W, ZHU M, WANG X, et al. An improved artificial potential field method of trajectory planning and obstacle avoidance for redundant manipulators[J]. International Journal of Advanced Robotic Systems, 2018, 15(5): 1729881418799562.

      [14] 谢龙, 刘山. 基于改进势场法的机械臂动态避障规划[J]. 控制理论与应用, 2018, 35(9): 1239-1249. doi: 10.7641/CTA.2018.70187
      [15]

      ZHANG N, ZHANG Y, MA C, et al. Path planning of six-DOF serial robots based on improved artificial potential field method[C]// 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau: IEEE, 2017.

      [16]

      GU S, HOLLY E, LILLICRAP T, et al. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates[C]//2017 IEEE international conference on robotics and automation (ICRA), Singapore: IEEE, 2017: 3389-3396.

      [17]

      WEN S, CHEN J, WANG S, et al. Path planning of humanoid arm based on deep deterministic policy gradient[C]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur: IEEE, 2018: 1755-1760.

      [18]

      KIM M, HAN D, PARK J, et al. Motion planning of robot manipulators for a smoother path using a twin delayed deep deterministic policy gradient with hindsight experience replay[J]. Applied Sciences, 2020, 10(2): 575. doi: 10.3390/app10020575

      [19]

      LU X, LEE K, ABBEEL P, et al. Dynamics generalization via information bottleneck in deep reinforcement learning[EB/OL]. arXiv, 2020: 2008.00614 [2020-08-03]. https://arxiv.org/abs/2008.00614.

      [20]

      BANINO A, BADIA A, WALKER J, et al. CoBERL: Contrastive BERT for reinforcement learning[EB/OL]. arXiv, 2021: 2107.05431 [2022-02-22]. https://arxiv.org/abs/2107.05431.

      [21]

      LIN G, ZHU L, LI J, et al. Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning[J]. Computers and Electronics in Agriculture, 2021, 188: 106350. doi: 10.1016/j.compag.2021.106350

      [22] 毕松, 张潞. 自然环境下的柑橘采摘点识别方法研究[J]. 计算机仿真, 2021, 38(12): 227-231.
      [23] 杨长辉, 刘艳平, 王毅, 等. 自然环境下柑橘采摘机器人识别定位系统研究[J]. 农业机械学报, 2019, 50(12): 14-22. doi: 10.6041/j.issn.1000-1298.2019.12.002
      [24] 尹建军, 武传宇, YANG S, 等. 番茄采摘机器人机械臂避障路径规划[J]. 农业机械学报, 2012, 43(12): 171-175. doi: 10.6041/j.issn.1000-1298.2012.12.031
      [25]

      CAO X, ZOU X, JIA C, et al. RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and Electronics in Agriculture, 2019, 156: 105-118. doi: 10.1016/j.compag.2018.10.031

      [26] 郑嫦娥, 高坡, GAN H, 等. 基于分步迁移策略的苹果采摘机械臂轨迹规划方法[J]. 农业机械学报, 2020, 51(12): 15-23. doi: 10.6041/j.issn.1000-1298.2020.12.002
      [27] 邓钊. 椪柑省力化疏果和促进果实膨大技术研究[D]. 武汉: 华中农业大学, 2018.
      [28] 张哲. 柑橘采摘机器人采摘姿态及序列研究[D]. 重庆: 重庆理工大学, 2018.
      [29] 熊俊涛, 李中行, 陈淑绵, 等. 基于深度强化学习的虚拟机器人采摘路径避障规划[J]. 农业机械学报, 2020, 51(S2): 1-10. doi: 10.6041/j.issn.1000-1298.2020.S2.001
      [30]

      ZHANG T, ZHANG K, LIN J, et al. Sim2real learning of obstacle avoidance for robotic manipulators in uncertain environments[J]. IEEE Robotics and Automation Letters, 2021, 7(1): 65-72.

      [31]

      XIE J, SHAO Z, LI Y, et al. Deep reinforcement learning with optimized reward functions for robotic trajectory planning[J]. IEEE Access, 2019, 7: 105669-105679. doi: 10.1109/ACCESS.2019.2932257

      [32]

      DUGULEANA M, BARBUCEANU F, TEIRELBAR A, et al. Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(2): 132-146.

      [33]

      LILLICRAP T, HUNT J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. arXiv, 2015: 1509.02971 [2019-07-05]. https://arxiv.org/abs/1509.02971.

      [34]

      HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[EB/OL]. arXiv, 2018: 1801.01290 [2018-08-08]. https://arxiv.org/abs/1801.01290.

      [35]

      HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL]. arXiv, 2018: 1812.05905 [2019-01-29]. https://arxiv.org/abs/1812.05905.

    图(11)  /  表(2)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-16
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2023-05-09

    目录

      HU Wenxin

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回