• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

氟苯尼考联合铜环境胁迫对土壤固氮菌成膜能力及相关基因表达的研究

梁仪, 周童, 白玲, 王美, 孙永学

梁仪, 周童, 白玲, 等. 氟苯尼考联合铜环境胁迫对土壤固氮菌成膜能力及相关基因表达的研究[J]. 华南农业大学学报, 2023, 44(3): 402-409. DOI: 10.7671/j.issn.1001-411X.202205046
引用本文: 梁仪, 周童, 白玲, 等. 氟苯尼考联合铜环境胁迫对土壤固氮菌成膜能力及相关基因表达的研究[J]. 华南农业大学学报, 2023, 44(3): 402-409. DOI: 10.7671/j.issn.1001-411X.202205046
LIANG Yi, ZHOU Tong, BAI Ling, et al. Biofilm-forming capacity of soil nitrogen-fixing bacteria and related gene expression under florfenicol combined with copper environmental stress[J]. Journal of South China Agricultural University, 2023, 44(3): 402-409. DOI: 10.7671/j.issn.1001-411X.202205046
Citation: LIANG Yi, ZHOU Tong, BAI Ling, et al. Biofilm-forming capacity of soil nitrogen-fixing bacteria and related gene expression under florfenicol combined with copper environmental stress[J]. Journal of South China Agricultural University, 2023, 44(3): 402-409. DOI: 10.7671/j.issn.1001-411X.202205046

氟苯尼考联合铜环境胁迫对土壤固氮菌成膜能力及相关基因表达的研究

基金项目: 国家自然科学基金(31772803)
详细信息
    作者简介:

    梁仪,硕士研究生,主要从事生态毒理学研究,E-mail: Liangyi1029@163.com

    通讯作者:

    孙永学,教授,博士,主要从事生态毒理学研究,E-mail: sunyx@scau.edu.cn

  • 中图分类号: S859.7

Biofilm-forming capacity of soil nitrogen-fixing bacteria and related gene expression under florfenicol combined with copper environmental stress

  • 摘要:
    目的 

    研究氟苯尼考和铜(Cu)残留对土壤固氮菌的生态毒性效应,为评价兽药的环境风险提供依据。

    方法 

    对从花生根际土壤中分离出的一株优势固氮菌RpEC2071进行氟苯尼考和铜胁迫处理,试验设置空白组(0 μg/mL)、氟苯尼考添加组(40 μg/mL)、Cu添加组(200 μg/mL)和混合组(氟苯尼考40 μg/mL+Cu 200 μg/mL),并于给药后采样。采用苯酚硫酸法和96孔法研究氟苯尼考和Cu单独或联合处理对固氮菌胞外多糖产生及生物膜形成能力的影响。采用RT-qPCR测定分析固氮菌生物膜及固氮相关基因的mRNA表达水平。

    结果 

    氟苯尼考和Cu单独胁迫会促进生物膜的形成,二者生物膜形成能力约为空白组的2倍;混合胁迫会抑制生物膜的形成,空白组生物膜形成能力是其3.1倍。胞外多糖分泌结果与生物膜形成能力测定结果基本一致。生物膜相关基因与氮代谢调控基因呈显著正相关,氟苯尼考和Cu的添加改变了fliQ、nifH和nnrR等基因的表达水平,且二者联合处理后会对其表达分别产生协同或拮抗作用。

    结论 

    氟苯尼考与Cu的单独或联合胁迫影响固氮菌RpEC2071中生物膜相关基因表达,进而对其生物膜形成能力产生影响。预示了以氟苯尼考和Cu为例的兽药及重金属残留胁迫会对土壤固氮菌产生潜在的生态毒性效应,从而破坏土壤中固氮生态系统。

    Abstract:
    Objective 

    The ecotoxic effects of florfenicol and copper (Cu) residues on soil nitrogen-fixing bacteria were studied to provide a basis for evaluating the environmental risks of veterinary drugs.

    Method 

    A dominant nitrogen-fixing bacterium RpEC2071 was isolated from peanut root enclosure and treated under florfenicol and Cu stress. We set the blank group (0 μg/mL), florfenicol group (40 μg/mL), Cu group (200 μg/mL) and mixed group (flufenicol 40 μg/mL, Cu 200 μg/mL), and collected samples at multiple time points after dosing. The phenol-sulfuric acid method and 96-well microplate method were used to study the effects of florfenicol and Cu alone or in combination on the production of extracellular polysaccharides and biofilm formation of nitrogen-fixing bacterium. RT-qPCR was used to determine nitrogen-fixing bacterium biofilm formation and the mRNA expression levels of nitrogen fixation-related genes.

    Result 

    Florfenicol and Cu alone promoted the formation of biofilms, and the biofilm formation capacity of both was about twice that of the blank group. Under mixed stress, the biofilm formation was inhibited, and the biofilm formation capacity of the blank group was 3.1 times that of it. The results of extracellular polysaccharide secretion were basically consistent with the results of the determination of biofilm formation ability. Biofilm-related genes were significantly positively correlated with nitrogen metabolism regulatory genes, and the addition of florfenicol and Cu changed the expression levels of genes such as fliQ,ntrX andnnrR, and it would produce synergistic or antagonistic effects after the combination treatment of florfenicol and Cu.

    Conclusion 

    The individual or combined stress of florfenicol and Cu affects the expression of biofilm-related genes in nitrogen-fixing bacteria RpEC2071, which in turn affects its ability to form biofilm. This research reveals the ecotoxic potential of veterinary drugs and heavy metal residue stresses on soil nitrogen-fixing bacteria, using florfenicol and Cu as examples. As a result, this can lead to the impairment of the nitrogen-fixing ecosystem in soil.

  • 图  1   菌株RpEC2071的革兰氏染色结果(×100光学显微镜)

    Figure  1.   Gram stain results of strain RpEC2071 (×100 light microscope)

    图  2   菌株RpEC2071的16S rDNA系统发育树

    Figure  2.   Phylogenetic tree of strain RpEC2071 16S rDNA

    图  3   菌株RpEC2071的生物膜试管形成试验

    Figure  3.   Biofilm formation experiment of strain RpEC2071 in test tube

    图  4   胁迫模型下的菌株RpEC2071生长曲线

    Figure  4.   Growth curve of strain RpEC2071 under stress model

    图  5   菌株RpEC2071的生物膜形成能力测定结果

    Figure  5.   Test results of biofilm formation capacity of strain RpEC2071

    图  6   菌株RpEC2071胞外多糖含量测定分析图

    Figure  6.   Analysis chart for determination of extracellular polysaccharide content of strain RpEC2071

    图  7   菌株RpEC2071的生物膜基因表达比较

    各图中,柱子上方凡是具有一个相同小写字母者,表示差异不显著(P >0.05,单因素方差分析)

    Figure  7.   Expression comparison of biofilm gene of strain RpEC2071

    In each figure, the same lowercase letters above the column indicate that the difference is not significant (P >0.05, one-way ANOVA)

    图  8   菌株RpEC2071的氮代谢调控基因表达比较

    各图中,柱子上方凡是具有一个相同小写字母者,表示差异不显著(P >0.05, 单因素方差分析)

    Figure  8.   Expression comparison of nitrogen metabolism regulation gene of strain RpEC2071

    In each figure, the same lowercase letters above the column indicate that the difference is not significant (P >0.05, one-way ANOVA)

    图  9   菌株RpEC2071的固氮基因nifH表达比较

    图中柱子上方凡是具有一个相同小写字母者,表示差异不显著(P >0.05,单因素方差分析)

    Figure  9.   Expression comparison of nitrogen fixation gene nifH of strain RpEC2071

    In the figure, the same lowercase letters above the column indicate that the difference is not significant (P >0.05, one-way ANOVA)

    表  1   96孔板中处理组各组分添加量

    Table  1   Addition of each component in a 96-well plate of treatment group μL

    组别 Group 改良肉汤 Improved broth 菌液 Bacterial solution 甲醇 Methanol 氟苯尼考1)Florfenicol CuSO42)
    空白组 Blank(CK) 170 20 10 0 0
    氟苯尼考组 Florfenicol(FF) 170 20 0 10 0
    铜组 Cu(Cu) 160 20 10 0 10
    混合组 Mixed(FF+Cu) 160 20 0 10 10
     1) ρ (氟苯尼考) =0.8 mg/mL;2) ρ (CuSO4) = 4 mg/mL  1)ρ (Florfenicol) = 0.8 mg/mL; 2) ρ (CuSO4) = 4 mg/mL
    下载: 导出CSV

    表  2   胁迫模型组各组分添加量

    Table  2   Addition of each component in stress model groups mL

    组别 Group 改良肉汤 Improved broth 菌液 Bacterial solution 甲醇 Methanol 氟苯尼考1)Florfenicol CuSO42)
    空白组 Blank(CK) 40.1 0.1 0.1 0 0
    氟苯尼考组 Florfenicol(FF) 40.1 0.1 0 0.1 0
    铜组 Cu(Cu) 40.0 0.1 0.1 0 0.1
    混合组 Mixed(FF+Cu) 40.0 0.1 0 0.1 0.1
     1) ρ (氟苯尼考)=16 mg/mL;2) ρ (CuSO4)= 80 mg/mL  1) ρ (Florfenicol) = 16 mg/mL; 2) ρ (CuSO4) = 80 mg/mL
    下载: 导出CSV

    表  3   引物序列

    Table  3   Primer sequences

    基因名称 Gene name 引物序列(5′→3′) Primer sequence 基因名称 Gene name 引物序列(5′→3′) Primer sequence
    flaF F: GCGAGCGACAGGCGTTGA R: TGATTATCCGGCTGCTTGAGATC ntrX F: ACTTGTCGGTGCGTCACTTGC R: GATGGGCTTCTTCCAGTGCG
    fliL F: AAAACGAACAGGCAGAGGGC R: GGGAAACGGTGCGGACATAG glnK F: TGACCGTGACCGAAGTAAAGGG R: TGCCGTCGCCGATCTGCC
    flhA F: ACCACCAGTCATTTCCTTGCCC R: CCGCCGTCGGACCCTCAT nnrR F: GCTGGACGGATTGCTGACCC R: GCCACCCGACGCTCTACCTC
    fliQ F: ATCGTCGGTGTCGCCATCG R: CGTCATTTCCTGAACCTGCGTC nifH F: CGGATTATCGCAGTAGCAAACC R: TCTGTCGTCTCCATCGCTTCAC
    ntrY F: CGCTGACACCAAGTTCACGACG R: GCATCATGGAGTTCCAGATACCC Rp16S-1 F: AGATGCTCTACCTTGATGTCCCTG R: AGATGCGTTGCGCCACCT
    下载: 导出CSV
  • [1] 牛金利, 彭金菊, 明月月, 等. 氟苯尼考胁迫对土壤细菌耐药性的影响[J]. 中国兽医杂志, 2019, 55(4): 95-98.
    [2]

    CHOI J Y, KIM Y, KO E A, et al. Acinetobacter species isolates from a range of environments: Species survey and observations of antimicrobial resistance[J]. Diagnostic Microbiology and Infectious Disease, 2012, 74(2): 177-180. doi: 10.1016/j.diagmicrobio.2012.06.023

    [3] 马驿, 彭金菊, 王芸, 等. 环丙沙星对土壤微生物量碳和土壤微生物群落碳代谢多样性的影响[J]. 生态学报, 2013, 33(5): 1506-1512.
    [4] 呼秀智, 薛占永, 王绥华, 等. 氟苯尼考对土壤微生物活动影响研究[J]. 山东畜牧兽医, 2011, 32(2): 3-5.
    [5]

    CAI L M, WANG Q S, LUO J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment, 2019, 650: 725-733. doi: 10.1016/j.scitotenv.2018.09.081

    [6] 施昊坤, 吴次芳, 张茂鑫, 等. 土地整治对工业区周边土壤微生物多样性和群落结构影响分析[J]. 环境科学学报, 2020, 40(1): 212-223.
    [7]

    GAO M L, SONG W H, ZHOU Q, et al. Interactive effect of oxytetracycline and lead on soil enzymatic activity and microbial biomass[J]. Environmental Toxicology and Pharmacology, 2013, 36(2): 667-674. doi: 10.1016/j.etap.2013.07.003

    [8]

    BAO Y Y, CHEN Q, MA W, et al. Influence of Fe addition on the accumulation of oxytetracycline in rice seedlings (Oryza sativa L. ) growing in hydroponic and soil culture[J]. Journal of Soils and Sediments, 2018, 18(5): 1958-1970. doi: 10.1007/s11368-018-1920-8

    [9]

    WANG M, WU J, ZHOU T, et al. Effects of copper and florfenicol on nirS- and nirK-type denitrifier communities and related antibiotic resistance in vegetable soils[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112011. doi: 10.1016/j.ecoenv.2021.112011

    [10]

    FALKOWSKI P G. Volution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387(6630): 272-275. doi: 10.1038/387272a0

    [11] 鲁文茹, 刘广锋, 郭志勋, 等. 金银花、连翘对溶珊瑚弧菌及其生物膜活性的影响[J]. 广东药学院学报, 2014, 30(3): 297-300.
    [12] 徐光域, 颜军, 郭晓强, 等. 硫酸−苯酚定糖法的改进与初步应用[J]. 食品科学, 2005, 26(8): 342-346.
    [13] 邹晓蕾, 刘礼崔, 罗立新. 细菌总RNA提取方法的比较[J]. 现代食品科技, 2013, 29(8): 1948-1954.
    [14]

    KARATAN E, WATNICK P. Signals, regulatory networks, and materials that build and break bacterial biofilms[J]. Microbiology and Molecular Biology Reviews, 2009, 73(2): 310-347. doi: 10.1128/MMBR.00041-08

    [15] 冯世文, 曾芸, 李军, 等. 细菌对氟苯尼考的耐药机制研究[J]. 黑龙江畜牧兽医, 2014(5): 52-54. doi: 10.13881/j.cnki.hljxmsy.2014.0015
    [16] 杜心恬, 宋馨, 刘欣欣, 等. 细菌胞外多糖生物合成转录调控因子研究进展[J]. 微生物学通报, 2021, 48(2): 573-581.
    [17]

    BOGINO P C, DE LAS MERCEDES OLIVA M, SORROCHE F G, et al. The role of bacterial biofilms and surface components in plant-bacterial associations[J]. International Journal of Molecular Sciences, 2013, 14(8): 15838-15859. doi: 10.3390/ijms140815838

    [18]

    WANG D, XU A M, ELMERICH C, et al. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions[J]. The ISME Journal, 2017, 11(7): 1602-1613. doi: 10.1038/ismej.2017.30

    [19]

    LI S, PENG C, CHENG T, et al. Nitrogen-cycling microbial community functional potential and enzyme activities in cultured biofilms with response to inorganic nitrogen availability[J]. Journal of Environmental Sciences, 2019, 76: 89-99. doi: 10.1016/j.jes.2018.03.029

    [20]

    YANG Z M, HAN Y L, MA Y, et al. Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes[J]. Scientific Reports, 2018, 8(1): 10913-10928. doi: 10.1038/s41598-018-29241-9

    [21]

    LI K H, WU G C, LIAO Y L, et al. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris[J]. Molecular Plant Pathology, 2020, 21(7): 907-922. doi: 10.1111/mpp.12938

    [22]

    CALATRAVA M, NOGALES J, AMEZTOY K, et al. The NtrY/NtrX system of Sinorhizobium meliloti GR4 regulates motility, EPS I production, and nitrogen metabolism but is dispensable for symbiotic nitrogen fixation[J]. Molecular Plant-Microbe Interactions, 2017, 30(7): 566-577. doi: 10.1094/MPMI-01-17-0021-R

    [23]

    HAO J, FENG Y, WANG X, et al. Soil microbial nitrogen-cycling gene abundances in response to crop diversification: A meta-analysis[J]. Science of the Total Environment, 2022, 838(4): 156621. doi: 10.1016/j.scitotenv.2022.156621.

    [24]

    BUENO E, ROBLES E, TORRES M, et al. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes[J]. Nitric Oxide, 2017, 68: 137-149. doi: 10.1016/j.niox.2017.02.002

    [25]

    BUENO E, MANIA D, MESA S, et al. Regulation of the emissions of the greenhouse gas nitrous oxide by the soybean endosymbiont Bradyrhizobium diazoefficiens[J]. International Journal of Molecular Sciences, 2022, 23(3): 1486. doi: 10.3390/ijms23031486.

图(9)  /  表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  8
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-05-09

目录

    Corresponding author: SUN Yongxue, sunyx@scau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回