• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

MicroRNA-1285及其靶标DDX3X对猪塞内卡病毒感染PK-15细胞的调控作用

孙媛, 唐晓钰, 白杨, 陈雨琪, 郑瑶瑶, 吴佼玲, 蓝天, 马静云

孙媛, 唐晓钰, 白杨, 等. MicroRNA-1285及其靶标DDX3X对猪塞内卡病毒感染PK-15细胞的调控作用[J]. 华南农业大学学报, 2023, 44(3): 357-366. DOI: 10.7671/j.issn.1001-411X.202205038
引用本文: 孙媛, 唐晓钰, 白杨, 等. MicroRNA-1285及其靶标DDX3X对猪塞内卡病毒感染PK-15细胞的调控作用[J]. 华南农业大学学报, 2023, 44(3): 357-366. DOI: 10.7671/j.issn.1001-411X.202205038
SUN Yuan, TANG Xiaoyu, BAI Yang, et al. Regulation effects of microRNA-1285 and its target DDX3X on Senecavirus A infected PK-15 cells[J]. Journal of South China Agricultural University, 2023, 44(3): 357-366. DOI: 10.7671/j.issn.1001-411X.202205038
Citation: SUN Yuan, TANG Xiaoyu, BAI Yang, et al. Regulation effects of microRNA-1285 and its target DDX3X on Senecavirus A infected PK-15 cells[J]. Journal of South China Agricultural University, 2023, 44(3): 357-366. DOI: 10.7671/j.issn.1001-411X.202205038

MicroRNA-1285及其靶标DDX3X对猪塞内卡病毒感染PK-15细胞的调控作用

基金项目: 广东省基础与应用基础研究基金(2020A1515010295,2022A1515012473)
详细信息
    作者简介:

    孙媛,讲师,博士,主要从事动物健康养殖与疫病防控研究,E-mail: sunyuan@scau.edu.cn

    通讯作者:

    马静云,教授,博士,主要从事动物健康养殖与综合防控研究,E-mail: majy2400@scau.edu.cn

  • 中图分类号: S852.42;S852.659.6

Regulation effects of microRNA-1285 and its target DDX3X on Senecavirus A infected PK-15 cells

  • 摘要:
    目的 

    探究MicroRNA-1285(miR-1285)及其靶标DDX3X在猪塞内卡病毒(Senecavirus A,SVA)感染PK-15细胞中的调控作用。

    方法 

    利用qRT-PCR、双荧光素酶活性及Western blot等方法研究miR-1285和DDX3X对I型干扰素(IFN-β)分泌及RIG-I信号通路的作用,分析miR-1285及DDX3X对SVA 3C蛋白基因表达的影响。

    结果 

    SVA感染PK-15细胞后,miR-1285表达量显著升高,并且miR-1285与DDX3X存在负靶向关系,二者可促进IFN-β转录及蛋白水平的表达。miR-1285通过靶向DDX3X对RIG-I信号通中的MAVS、TRAF3信号分子起调控作用。对于SVA 3C蛋白基因,DDX3X可以显著抑制其转录,并且可以逆转miR-1285所诱导的上调趋势。

    结论 

    SVA感染PK-15细胞后,宿主miR-1285及其靶标DDX3X对IFN-β及病毒3C蛋白的表达具有调控作用,研究结果将为明确miRNAs调控SVA感染的分子机制奠定基础,并为SVA的防控和诊断提供新的科学依据。

    Abstract:
    Objective 

    To explore the regulation roles of microRNA-1285 (miR-1285) and its target DDX3X in Senecavirus A (SVA) infected PK-15 cells.

    Method 

    By qRT-PCR, double luciferase activity and Western blot, the effects of miR-1285 and its target DDX3X on IFN-β secretion and the RIG-I signaling pathway were studied, and their effects on the expression of SVA 3C protein gene were analyzed.

    Result 

    In SVA infected PK-15 cells, the expression of miR-1285 increased significantly, and there was a negative targeting relationship between miR-1285 and DDX3X. Both miR-1285 and DDX3X promoted the transcription and protein expression of IFN-β. MiR-1285 regulated MAVS and TRAF3 signaling molecules in the RIG-I signaling pathway by targeting DDX3X. For SVA 3C protein, DDX3X significantly inhibited the transcription of 3C and reversed the up-regulation trend induced by miR-1285.

    Conclusion 

    After infecting PK-15 cells with SVA, host miR-1285 and its target DDX3X can regulate the expression of IFN-β and the viral 3C protein, which will lay a foundation for clarifying the molecular mechanism of miRNAs regulating SVA infection, and provide a new scientific basis for the prevention, control and diagnosis of SVA.

  • 图  1   不同SVA感染时间(A)和感染剂量(B)条件下PK-15细胞中miR-1285的表达量

    “*”“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)

    Figure  1.   Expression of miR-1285 in PK-15 cells infected by SVA at different infection time (A) and dosages (B)

    “*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)

    图  2   miR-1285与DDX3X的靶向结合位点

    Figure  2.   Targeted binding site between miR-1285 and DDX3X

    图  3   转染miR-1285 mimics、inhibitor至PK-15细胞后DDX3X蛋白的表达

    Figure  3.   DDX3X protein expression after the transfection of miR-1285 mimics, inhibitor into PK-15 cells

    图  4   转染miR-1285 mimics、inhibitor至PK-15细胞后DDX3X的mRNA相对表达量

    “**”表示处理与对照在P < 0.01水平差异显著 (Duncan’s 法)

    Figure  4.   The relative expression of DDX3X mRNA after transfection of miR-1285 mimics and inhibitor into PK-15 cells

    “**” represented statistical difference in comparison with control group at P < 0.01 level (Duncan’s method)

    图  5   转染不同DDX3X重组载体质粒至PK-15细胞后miR-1285双荧光素酶活性

    “*”表示处理与对照在P < 0.05水平差异显著 (Duncan’s 法)

    Figure  5.   The relative dual-luciferase activity of miR-1285 after transfection of different DDX3X recombinant vector plasmids into PK-15 cells

    “*” represented statistical difference in comparison with control group at P < 0.05 level (Duncan’s method)

    图  6   miR-1285及其靶标DDX3X对IFN-β mRNA表达的调控作用

    “*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)

    Figure  6.   Regulation effects of miR-1285 and its target DDX3X on the mRNA expression of IFN-β

    “*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)

    图  7   miR-1285及其靶标DDX3X对IFN-β 蛋白表达的调控作用

    Figure  7.   Regulation effects of miR-1285 and its target DDX3X on the protein expression of IFN-β

    图  8   miR-1285对RIG-I通路信号转导分子的影响

    “*”表示处理与对照在P < 0.05水平差异显著(Duncan’s法)

    Figure  8.   Effects of miR-1285 on signal transduction molecules of the RIG-I pathway

    “*” represented statistical difference in comparison with control group at P < 0.05 level respectively (Duncan’s method)

    图  9   DDX3X沉默对RIG-I通路信号转导分子的影响

    “*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)

    Figure  9.   Effects of DDX3X silencing on signal transduction molecules of the RIG-I pathway

    “*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)

    图  10   miR-1285及其靶标DDX3X对SVA 3C表达的影响

    “**”表示处理与对照在P < 0.01水平差异显著(Duncan’s法)

    Figure  10.   Effects of miR-1285 and its target DDX3X on the expression of SVA 3C

    “**” represented statistical difference in comparison with control group at P < 0.01 level respectively (Duncan’s method)

    表  1   基因引物序列

    Table  1   Primer sequences of genes

    基因名称 Gene name 引物/探针序列(5′→3′) Primer/Probe sequence θ退火/ ℃ Annealing temperature 产物大小/bp Product size 文献 Reference
    RIG-I F: ATCCCAGCAACGAGAA 60 188 [36]
    R: GCCACGTCCAGTCAAT
    MDA5 F: GAGGAATCAGCACGAGGAA 58 73 [37]
    R: GTCAGTAATCCACTGGGA
    MAVS F: ATAGCCAGCCTTTCTCGG 60 237 [36]
    R: TAGCCTCAGTCTTGACCTCTTC
    TRAF3 F: GTGTCAAGAAGGCATCG 60 164 [36]
    R: CCTCAAACTGGCAATCA
    TANK F: GGACGCCTTGAACTACCTGT 60 119
    R: GCCTGCCGAAAGGCTTCATA
    TBK1 F: GCCTTTCTCGGGGTCTTCAA 60 74
    R: ACACTTTTCCTGATCCGCCT
    IRF3 F: CCAGTGGTGCCTACACTCCT 61 191 [38]
    R: AGAGGTGTCTGGCTCAGGAA
    IRF7 F: CGCCTCCTGGAAAACCAA 60 76 [37]
    R: CCCTGAGTTGTCCTGCAACA
    IFN-β F: GCTAACAAGTGCATCCTCCAAA 60 77 [39]
    R:AGCACATCATAGCTCATGGAAAGA
    GAPDH F: ACATGGCCTCCAAGGAGTAAGA 60 106 [40]
    R: GATCGAGTTGGGGCTGTGACT
    SVA-3C F: GAGCTTCAATCTCCTAGA 59 115
    R: GTGTCATCATTCTCGTTAG
    探针 Probe CAGACATTCGAGCCAAGCAACAA 69
    下载: 导出CSV
  • [1]

    YATES L A, NORBURY C J, GIBERT R J C. The long and short of microRNA[J]. Cell, 2013, 153(3): 516-519. doi: 10.1016/j.cell.2013.04.003

    [2]

    CHENG J, WU R, LONG L, et al. MiRNA-451a targets IFN regulatory factor 8 for the progression of systemic lupus erythematosus[J]. Inflammation, 2017, 40(2): 676-687. doi: 10.1007/s10753-017-0514-8

    [3]

    WANG L, ZHOU L, HU D, et al. Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro[J]. Experimental and Therapeutic Medicine, 2018, 15(1): 115-126.

    [4]

    MORIN R D, O’CONNOR M D, GRIFFITH M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells[J]. Genome Research, 2008, 18(4): 610-621. doi: 10.1101/gr.7179508

    [5]

    ANTHON C, TAFER H, HAVGAARD J H, et al. Structured RNAs and synteny regions in the pig genome[J]. BMC Genomics, 2014, 15: 459. doi: 10.1186/1471-2164-15-459.

    [6]

    GAO X, WANG Y, ZHAO H, et al. Plasma miR-324-3p and miR-1285 as diagnostic and prognostic biomarkers for early stage lung squamous cell carcinoma[J]. Oncotarget, 2016, 7(37): 59664-59675. doi: 10.18632/oncotarget.11198

    [7]

    BORRELLI N, DENARO M, UGOLINI C, et al. MiRNA expression profiling of ‘noninvasive follicular thyroid neoplasms with papillary-like nuclear features’ compared with adenomas and infiltrative follicular variants of papillary thyroid carcinomas[J]. Modern Pathology, 2017, 30(1): 39-51. doi: 10.1038/modpathol.2016.157

    [8]

    LIU J, YAN J, ZHOU C, et al. MiR-1285-3p acts as a potential tumor suppressor miRNA via down regulating JUN expression in hepatocellular carcinoma[J]. Tumor Biology, 2015, 36: 219-225. doi: 10.1007/s13277-014-2622-5

    [9]

    HUANG H, XIONG G, SHEN P, et al. MicroRNA-1285 inhibits malignant biological behaviors of human pancreatic cancer cells by negative regulation of YAP1[J]. Neoplasma, 2017, 64(3): 358-366. doi: 10.4149/neo_2017_306

    [10]

    LIAO J, LI Q, HU Z, et al. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells[J]. Journal of Hazardous Materials, 2022, 422: 126899. doi: 10.1016/j.jhazmat.2021.126899.

    [11]

    VENKATARAMANNAN S, GADEK M, CALVIELLO L, et al. DDX3X and DDX3Y are redundant in protein synthesis[J]. RNA, 2021, 27(12): 1577-1588. doi: 10.1261/rna.078926.121

    [12]

    VAN VOSS M R H, KAMMERS K, VESUNA F, et al. Global effects of DDX3 inhibition on cell cycle regulation identified by a combined phosphoproteomics and single cell tracking approach[J]. Translational Oncology, 2018, 11(3): 755-763. doi: 10.1016/j.tranon.2018.04.001

    [13]

    HEATON S M, BORG N A, DIXIT V M. Ubiquitin in the activation and attenuation of innate antiviral immunity[J]. Journal of Experimental Medicine, 2016, 213(1): 1-13. doi: 10.1084/jem.20151531

    [14]

    HATHAICHOTI S, VISITNONTHACHAI D, NGAMSIRI P, et al. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression[J]. Toxicology in Vitro, 2017, 42: 123-129. doi: 10.1016/j.tiv.2017.04.016

    [15]

    LIN T C. DDX3X multifunctionally modulates tumor progression and serves as a prognostic indicator to predict cancer outcomes[J]. International Journal of Molecular Sciences, 2019, 21(1): 281. doi: 10.3390/ijms21010281.

    [16]

    SOULAT D, BŰRCKSTŰMMER T, WESTERMAYER S, et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response[J]. EMBO Journal, 2008, 27(15): 2135-2146. doi: 10.1038/emboj.2008.126

    [17]

    SCHRŐDER M, BARAN M, BOWIE A G. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation[J]. EMBO Journal, 2008, 27(15): 2147-2157. doi: 10.1038/emboj.2008.143

    [18]

    OSHIUMI H, SAKAI K, MATSUMOT M, et al. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential[J]. European Journal of Immunology, 2010, 40(4): 940-948. doi: 10.1002/eji.200940203

    [19]

    SZAPPANOS D, TSCHISMAROV R, PERLOT T, et al. The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity[J]. PLoS Pathogens, 2018, 14(11): e1007397. doi: 10.1371/journal.ppat.1007397

    [20]

    ADAMS M J, LEFKOWITZ E J, KING A M Q, et al. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses[J]. Archives of Virology, 2016, 161(10): 2921-2949. doi: 10.1007/s00705-016-2977-6

    [21]

    VANNUCCI F A, LINHARES D C L, BARCELLOS D E S N, et al. Identification and complete genome of Seneca Valley virus in vesicular fluid and sera of pigs affected with idiopathic vesicular disease, Brazil[J]. Transboundary Emerging Disease, 2015, 62: 589-593. doi: 10.1111/tbed.12410

    [22]

    CANNING P, CANON A, BATES J L, et al. Neonatal mortality, vesicular lesions and lameness associated with Senecavirus A in a U. S. sow farm[J]. Transboundary and Emerging Disease, 2016, 63(4): 373-378. doi: 10.1111/tbed.12516

    [23]

    ZHANG X L, ZHU Z X, YANG F, et al. Review of Seneca Valley virus: A call for increased surveillance and research[J]. Frontiers in Microbiology, 2018, 9: 940. doi: 10.3389/fmicb.2018.00940.

    [24]

    FERNANDES M H V, MAGGIOLI M F, OTTA J, et al. Senecavirus A 3C protease mediates host cell apoptosis late in infection[J]. Frontiers in Immunology, 2019, 10: 363. doi: 10.3389/fimmu.2019.00363.

    [25]

    LEME R A, OLIVEIRA T E S, ALFIERI A F, et al. Pathological, immunohistochemical and molecular findings associated with Senecavirus A-induced lesions in neonatal piglets[J]. Journal of Comparative Pathology, 2016, 155(2/3): 145-155.

    [26]

    HAUSE B M, MYERS O, DUFF J, et al. Senecavirus A in pigs, United States, 2015[J]. Emerging Infectious Diseases, 2016, 22(7): 1323-1325. doi: 10.3201/eid2207.151591

    [27]

    XU W, HOLE K, GOOLIA M, et al. Genome wide analysis of the evolution of Senecavirus A from swine clinical material and assembly yard environmental samples[J]. PLoS One, 2017, 12(5): e0176964. doi: 10.1371/journal.pone.0176964

    [28]

    WU Q, ZHAO X, BAI Y, et al. The first identification and complete genome of Senecavirus A affecting pig with idiopathic vesicular disease in China[J]. Transboundary and Emerging Disease, 2017, 64(5): 1633-1640. doi: 10.1111/tbed.12557

    [29]

    SAENG-CLUTO K, RODTIAN P, TEMEEYASEN G, et al. The first detection of Senecavirus A in pigs in Thailand, 2016[J]. Transboundary and Emerging Disease, 2018, 65(1): 285-288. doi: 10.1111/tbed.12654

    [30]

    SUN D, VANNUCCI F, KNUTSON T P, et al. Emergence and whole-genome sequence of Senecavirus A in Colombia[J]. Transboundary and Emerging Diseases, 2017, 64(5): 1346-1349. doi: 10.1111/tbed.12669

    [31]

    ARZT J, BERTRAM M R, VU L T, et al. First detection and genome sequence of Senecavirus A in Vietnam[J]. Microbiology Resource Announcements, 2019, 8(3). doi: 10.1128/MRA.01247-18.

    [32]

    SUN Y, CHENG J, WU R T, et al. Phylogenetic and genome analysis of 17 novel Senecavirus A isolates in Guangdong Province, 2017[J]. Frontiers in Veterinary Science, 2018, 5: 314. doi: 10.3389/fvets.2018.00314.

    [33]

    QIAN S, FAN W, QIAN P, et al. Isolation and full-genome sequencing of Seneca Valley virus in piglets from China, 2016[J]. Virology Journal, 2016, 13: 173. doi: 10.1186/s12985-016-0631-2.

    [34]

    ZHU Z, YANG F, CHEN P, et al. Emergence of novel Seneca Valley virus strains in China, 2017[J]. Transboundary and Emerging Diseases, 2017, 64(4): 1024-1029. doi: 10.1111/tbed.12662

    [35]

    WANG H, LI C, ZHAO B, et al. Complete genome sequence and phylogenetic analysis of Senecavirus A isolated in Northeast China in 2016[J]. Archives of Virology, 2017, 162(10): 3173-3176. doi: 10.1007/s00705-017-3480-4

    [36]

    ZHANG J, MIAO J, HOU J, et al. The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages[J]. Virology Journal, 2015, 12: 61. doi: 10.1186/s12985-015-0284-6.

    [37] 谢立兰. 伪狂犬病毒和猪传染性胃肠炎病毒诱导β干扰素产生的分子机制研究[D]. 武汉: 华中农业大学, 2011.
    [38]

    ISLAM M A, GROßE-BRINKHAUS C, PRŐLL M J, et al. Deciphering transcriptome profiles of peripheral blood mononuclear cells in response to PRRSV vaccination in pigs[J]. BMC Genomics, 2016, 17: 641. doi: 10.1186/s12864-016-2849-1.

    [39] 王荡. 口蹄疫病毒Lpro和3Cpro调控宿主抗病毒天然免疫反应的分子机制研究[D]. 武汉: 华中农业大学, 2011.
    [40] 王国庆. 口蹄疫病毒2B蛋白拮抗RIG-I抗病毒作用研究[D]. 兰州: 甘肃农业大学, 2015.
    [41]

    DERRICK T, ROBERTS C H, RAJASEKHAR M, et al. Conjunctival microRNA expression in inflammatory trachomatous scarring[J]. PLoS Neglected Tropical Diseases, 2013, 7(3): e2117. doi: 10.1371/journal.pntd.0002117

    [42]

    KAUR S, KRISHN S R, RACHAGANI S, et al. Significance of microRNA-based biomarkers for pancreatic cancer[J]. Annals of Translational Medicine, 2015, 3(18): 277.

    [43]

    LIU Y, XU X, XU X, et al. MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1[J]. Oncology Letters, 2017, 14(5): 5121-5128.

    [44]

    MORGUL M H, KLUNK S, ANASTASIADOU Z, et al. Diagnosis of HCC for patients with cirrhosis using miRNA profiles of the tumor-surrounding tissue: A statistical model based on stepwise penalized logistic regression[J]. Experimental and Molecular Pathology, 2016, 101(2): 165-171. doi: 10.1016/j.yexmp.2016.07.014

    [45]

    POIRIER J T, DOBROMILSKAVA I, MORIARTY W F, et al. Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer[J]. Journal of the National Cancer Institute, 2013, 105(14): 1059-1065. doi: 10.1093/jnci/djt130

    [46]

    ZHOU Z H, SUN Y, YAN X L, et al. Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I[J]. Virus Research, 2020, 278: 197843. doi: 10.1016/j.virusres.2019.197843.

    [47]

    ANDREJEVA J, CHILDS K S, YOUNG D F, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17264-17269. doi: 10.1073/pnas.0407639101

    [48]

    CAO L, GE X, GAO Y, et al. Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-beta production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway[J]. Virology Journal, 2015, 12: 127. doi: 10.1186/s12985-015-0345-x.

    [49]

    CHEN Q, LIU Q, LIU D, et al. Molecular cloning, functional characterization and antiviral activity of porcine DDX3X[J]. Biochemical and Biophysical Research Communications, 2014, 443(4): 1169-1175. doi: 10.1016/j.bbrc.2013.12.098

    [50]

    ZHAO X, WU Q, BAI Y, et al. Phylogenetic and genome analysis of seven Senecavirus A isolates in China[J]. Transboundary and Emerging Diseases, 2017, 64(6): 2075-2082. doi: 10.1111/tbed.12619

    [51]

    THOMPSON S R, SARNOW P. Regulation of host cell translation by viruses and effects on cell function[J]. Current Opinion in Microbiology, 2000, 3(4): 366-370. doi: 10.1016/S1369-5274(00)00106-5

    [52]

    QIAN S, FAN W, LIU T, et al. Seneca Valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage[J]. Journal of Virology, 2017, 91(16): e00823-17.

    [53]

    LIU T, LI X, WU M, et al. Seneca Valley virus 2C and 3Cpro induce apoptosis via mitochondrion-mediated intrinsic pathway[J]. Frontiers in Microbiology, 2019, 10: 1202. doi: 10.3389/fmicb.2019.01202.

    [54]

    XUE Q, LIU H, ZHU Z, et al. Seneca Valley Virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase[J]. Antiviral Research, 2018, 160: 183-189. doi: 10.1016/j.antiviral.2018.10.028

图(10)  /  表(1)
计量
  • 文章访问数:  1367
  • HTML全文浏览量:  15
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-05-09

目录

    Corresponding author: MA Jingyun, majy2400@scau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回