Metabolites and antifungal activities of an endophytic fungus Epicoccum sorghinum from mangrove
-
摘要:目的
研究红树内生真菌高粱附球菌Epicoccum sorghinum L28的代谢产物及其抗真菌活性。
方法柱层析分离纯化代谢产物,波谱技术鉴定结构;二倍稀释法测试代谢产物对小麦赤霉菌Fusarium graminearum和番茄枯萎菌F. oxysporum的最小抑菌浓度(Minimum inhibitory concentration,MIC)。
结果分离鉴定出7−羟基−2,5−二甲基色原酮(化合物1)、Livistone A(化合物2)、Barceloneic acid A(化合物3)、Barceloneic lactone(化合物4)、2′-O-methylbarceloneate(化合物5)、Spirostaphylotrichin R(化合物6)、 Spirostaphylotrichin U(化合物7)、β−谷甾醇(化合物8)、β−胡萝卜苷(化合物9)和β−腺苷(化合物10)。化合物1能强烈抑制小麦赤霉菌和番茄枯萎菌的生长,MIC均为100 μg/mL;化合物5对番茄枯萎菌的生长具有中等抑制作用,MIC为200 μg/mL。
结论化合物1和化合物5可作为相应抗菌农药先导化合物开展研究。
Abstract:ObjectiveThe metabolites of Epicoccum sorghinum L28 from mangrove and their antifungal activities were studied.
MethodThe metabolites were isolated and purified by column chromatography, and their structures were identified by spectral technique. The minimum inhibitory concentration (MIC) of the metabolites against Fusarium graminearum and F. oxysporum were tested by the double dilution method.
ResultTen compounds were isolated and identified as 7-hydroxy-2, 5-dimethyltrichroprimorone (compound 1), livistone A (compound 2), barceloneic acid A (compound 3), barceloneic lactone (compound 4), 2'-O-methylbarceloneate (compound 5), spirostaphylotrichin R (compound 6), spirostaphylotrichin U (compound 7), β-sitosterol (compound 8), β-carotenoside (compound 9) and β-adenosine (compound 10). 7-hydroxy-2, 5-dimethyltryptophanone displayed strong inhibitory effect against the growths of F. graminearum and F. oxysporum with MIC of 100 μg/mL. 2'-O-methylbarceloneate showed moderate inhibitory activity against F. oxysporum with MIC of 200 μg/mL.
ConclusionCompounds 1 and 5 could be further studied as the lead compounds of corresponding antifungal pesticides.
-
Keywords:
- Mangrove /
- Plant endophytic fungus /
- Metabolite /
- Antifungal activity /
- Double dilution method
-
-
[1] 欧阳迪莎, 施祖美, 吴祖建, 等. 植物病害与粮食安全[J]. 农业环境与发展, 2003(6): 24-26. [2] 荚恒刚, 魏安季. 小麦赤霉病的发生及防治[J]. 现代农业科技, 2021(17): 108-109. doi: 10.3969/j.issn.1007-5739.2021.17.045 [3] 王云霞. 番茄枯萎病的发生原因及综合防治[J]. 农业技术与装备, 2019(6): 89-90. doi: 10.3969/j.issn.1673-887X.2019.06.042 [4] 孙艳敏, 韩锦峰, 陈小丽, 等. 减施化学农药防治植物病害措施的研究进展[J]. 贵州农业科学, 2021, 49(5): 58-66. doi: 10.3969/j.issn.1001-3601.2021.05.011 [5] 卜宣尹, 杨卫丽. 植物内生菌抑菌机制和抑菌次生代谢产物的研究进展[J]. 现代药物与临床, 2021, 36(10): 2200-2206. [6] 郑颖琳, 佟奕辰, 孙英英, 等. 红树林真菌Aspergillus sp. 次级代谢产物及其生物活性(英文)[J]. 中山大学学报(自然科学版), 2020, 59(1): 133-143. [7] ZHU J, LI Z, LU H, et al. New diphenyl ethers from a fungus Epicoccum sorghinum L28 and their antifungal activity against phytopathogens[J]. Bioorganic Chemistry, 2021, 115: 105232. doi: 10.1016/j.bioorg.2021.105232
[8] WU Z, XIE Z, WU M, et al. New antimicrobial cyclopentenones from Nigrospora sphaerica ZMT05, a fungus derived from Oxya chinensis Thunber[J]. Journal of Agricultural and Food Chemistry, 2018, 66(21): 5368-5372. doi: 10.1021/acs.jafc.8b01376
[9] KAMETANI S, KOJIMA-YUASA A, KIKUZAKI H, et al. Chemical constituents of cape aloe and their synergistic growth-inhibiting effect on Ehrlich ascites tumor cells[J]. Bioscience Biotechnology and Biochemistry, 2007, 71(5): 1220-1229. doi: 10.1271/bbb.60659
[10] YUAN T, YANG S P, ZHANG H Y, et al. Phenolic compounds with cell protective activity from the fruits of Livistona chinensis[J]. Journal of Asian Natural Products Research, 2009, 11(3): 243-249. doi: 10.1080/10286020802684631
[11] JAYASURIYA H, BALL R G, ZINK D L, et al. Barceloneic acid A, a new farnesyl-protein transferase inhibitor from a Phoma species[J]. Journal of Natural Products, 1995, 58(7): 986-991. doi: 10.1021/np50121a002
[12] 李露莹, 张晓燕, 孙炳达, 等. 沙漠药用植物沙蒿内生真菌Embellisia chlamydospora中酚酸类化合物研究[J]. 菌物学报, 2018, 37(1): 88-94. [13] OVERY D P, LARSEN T O, DALSGAARD P W, et al. Andrastin A and barceloneic acid metabolites, protein farnesyl transferase inhibitors from Penicillium albocoremium: Chemotaxonomic significance and pathological implications[J]. Mycological Research, 2005, 109(11): 1243-1249. doi: 10.1017/S0953756205003734
[14] ABRAHAM W R, HANSSEN H P, ARFMANN H A. Spirostaphylotrichins U and V from Curvularia pallescens[J]. Phytochemistry, 1994, 38(4): 834-845.
[15] 封士兰, 何兰, 王敏, 等. 百合花化学成分的研究[J]. 中国中药杂志, 1994(10): 611-612. doi: 10.3321/j.issn:1001-5302.1994.10.014 [16] RUBINSTEIN L, GOAD L J, CLAGUE A D H, et al. The 220 MHz NMR spectra of phytosterols[J]. Phytochcmistry, 1976, 15: 195-200. doi: 10.1016/S0031-9422(00)89083-4
[17] LASISI A A, ADESOMOJU A A. New monoacylglycerol and antimicrobial constituents from the stem barks of Berlinia confusa[J]. Journal of Herbs, Spices & Medicinal Plants, 2012, 18(2): 111-131.
[18] DOMONDON D L, HE W, DE KIMPE N, et al. β-adenosine, a bioactive compound in grass chaff stimulating mushroom production[J]. Phytochemistry, 2004, 65(2): 181-187. doi: 10.1016/j.phytochem.2003.11.004
[19] CHEN S, LIU Z, LIU Y, et al. New depsidones and isoindolinones from the mangrove endophytic fungus Meyerozyma guilliermondii (HZ-Y2) isolated from the South China Sea[J]. Beilstein Journal of Organic Chemistry, 2015, 11(1): 1187-1193.
[20] ARUNPANICHLERT J, RUKACHAISIRIKUL V, TADPETCH K, et al. A dimeric chromanone and a phthalide: Metabolites from the seagrass-derived fungus Bipolaris sp. PSU-ES64[J]. Phytochemistry Letters, 2012, 5(3): 604-608. doi: 10.1016/j.phytol.2012.06.004