• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于mtDNA和cpDNA序列的甘薯栽培种及近缘野生种分析

王崇, 王连军, 田小海, 雷剑, 柴沙沙, 焦春海, 杨新笋

王崇, 王连军, 田小海, 等. 基于mtDNA和cpDNA序列的甘薯栽培种及近缘野生种分析[J]. 华南农业大学学报, 2021, 42(4): 25-32. DOI: 10.7671/j.issn.1001-411X.202011026
引用本文: 王崇, 王连军, 田小海, 等. 基于mtDNA和cpDNA序列的甘薯栽培种及近缘野生种分析[J]. 华南农业大学学报, 2021, 42(4): 25-32. DOI: 10.7671/j.issn.1001-411X.202011026
WANG Chong, WANG Lianjun, TIAN Xiaohai, et al. Analyses of Ipomoea batatas cultivated species and wild relatives based on mtDNA and cpDNA sequences[J]. Journal of South China Agricultural University, 2021, 42(4): 25-32. DOI: 10.7671/j.issn.1001-411X.202011026
Citation: WANG Chong, WANG Lianjun, TIAN Xiaohai, et al. Analyses of Ipomoea batatas cultivated species and wild relatives based on mtDNA and cpDNA sequences[J]. Journal of South China Agricultural University, 2021, 42(4): 25-32. DOI: 10.7671/j.issn.1001-411X.202011026

基于mtDNA和cpDNA序列的甘薯栽培种及近缘野生种分析

基金项目: 国家重点研发计划(2019YFD1001300,2019YFD1001304,2019YFD1001305);粮食作物种质创新与遗传改良湖北省重点实验室开放课题(国家现代甘薯产业技术体系建设项目)(CARS-11-C-15);湖北省技术创新专项(重大项目)(2017ABA149);湖北省农业科学院特色学科、湖北省农业科技创新中心资助项目(2007-620-001-03);湖北省农业科学院青年拔尖人才培养计划
详细信息
    作者简介:

    王崇(1994—),男,博士研究生,E-mail: wangchong199409@163.com

    王连军(1980—),男,副研究员,博士,E-mail: wanglianjun10@163.com;†表示同等贡献

    通讯作者:

    焦春海(1962—),男,研究员,博士,E-mail: jiaoch@hotmail.com

    杨新笋(1967—),男,研究员,博士,E-mail: yangxins013@163.com

    †表示同等贡献

  • 中图分类号: S531

Analyses of Ipomoea batatas cultivated species and wild relatives based on mtDNA and cpDNA sequences

  • 摘要:
    目的 

    利用线粒体DNA(Mitochondrial DNA,mtDNA)序列和叶绿体DNA(Chloroplast DNA,cpDNA)matK序列对甘薯Ipomoea batatas栽培种及近缘野生种进行分子鉴定和亲缘关系分析,为甘薯栽培种和近缘野生种的种质鉴定、保护及开发利用提供理论依据。

    方法 

    以3个甘薯栽培种及8个近缘野生种为材料,采用CTAB法提取基因组DNA,通过PCR扩增mtDNA序列和cpDNA matK序列,使用DnaSP 6.0对序列进行核苷酸多态性、单倍型多样性等特征分析,并基于邻接法构建3个甘薯栽培种及8个近缘野生种的系统发育进化树。

    结果 

    5个mtDNA序列和cpDNA matK序列经测序、比对、拼接后,长度为6 713 bp,GC占比在47.79%~48.31%之间。合并序列的单倍型数量、核苷酸多态性、变异位点数量、单一突变位点数量、简约信息位点数量和插入/缺失位点数量分别为9、0.003 25、69、39、30和111。中性检验显示,合并序列差异不显著(P>0.10),遵循中性进化模型。3个甘薯栽培种及8个近缘野生种间的遗传距离在0.000 00~0.005 84之间,平均遗传距离0.003 26,遗传多样性较低;按照亲缘关系被分为2大类,各大类内部亲缘关系较近。

    结论 

    本研究采用的序列可对甘薯栽培种和近缘野生种进行准确的鉴定区分,为甘薯近缘野生种的进化和利用提供参考和理论指导。

    Abstract:
    Objective 

    To conduct molecular identification and genetic relationship analysis of Ipomoea batatas cultivated species and wild relatives based on mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) matK sequences, and provide theoretical bases for germplasm identification, protection, development and utilization.

    Method 

    Three cultivated species and eight wild relatives were used as materials, from which total DNA was extracted by the CTAB method. Their mtDNA and cpDNA matK sequences were amplified by PCR. DnaSP 6.0 was used to analyze nucleotide diversity, haplotype diversity and other characteristics. The phylogenetic tree of three cultivated species and eight wild relatives was constructed based on the neighbor-joining method.

    Result 

    The length of five mtDNA regions and one cpDNA region was 6 713 bp after sequencing, alignment and splicing, the GC proportion was 47.79%−48.31%, and the haplotype number, nucleotide diversity, variable site number, singleton variable site number, parsimony informative site number, insertion/deletion site number were 9, 0.003 25, 69, 39, 30, 111, respectively. The neutrality test showed there was no significant difference between Tajima’sD values at the level of P>0.10, which indicated that variation of those regions followed neutral theory of molecular evolution. The genetic distances among three cultivated species and eight wild relatives ranged from 0.000 00 to 0.005 84, with an average genetic distance of 0.003 26, indicating low genetic diversity. The phylogenetic tree divided the 11 species into two categories with close genetic relationship within the category.

    Conclusion 

    The sequences used in this study can accurately identify I. batatas cultivated species and wild relatives, and provide references and theoretical guidance for the evolution and utilization of I. batatas wild relatives.

  • 图  1   邻接法构建系统发育进化树

    图中数字表示自展值百分比/%

    Figure  1.   The phylogenetic tree constructed by neighbor-joining method

    The number in the figure indicates the bootstrap value percentage/%

    图  2   单倍型中介邻接网络图

    H_1~ H_9:单倍型,mv:可能存在的原始单倍型

    Figure  2.   Median-joining network for haplotypes

    H_1−H_9: Haplotype, mv: The possible original haplotype

    表  1   试验采用引物信息

    Table  1   The information of primers used in this experiment

    类别
    Species
    基因序列
    Gene sequence
    引物
    Primer
    片段大小/bp
    Fragment size
    退火温度/℃
    Annealing temperature
    参考文献
    Reference
    mtDNA ccb203 F: ASGTTCTACGGACCGATGCC 500 57 [22]
    R: CACGGGGAGGGAGCRGGCGA
    ccb256 F: GGAAGTTAGCAAAGTTAGAC 520 57 [22]
    R: TTGTTCTTAACAGCGATGGC
    nad2/1-2 F: TTTTCTTCCTCATTCTKATTT 1200 57 [22]
    R: CCACTCTATTGTCCACTTCTA
    nad2/4-5 F: TTCATATAGAATCCATGTCC 1800 57 [22]
    R: CTATTTGTTCTTCGCCGCTT
    nad5/4-5 F: CCAATTTTTGGGCCAATTCC 1400 57 [23]
    R: CATTGCAAAGGCATAATGAT
    nad7/1-2 F: ACCTCAACATCCTGCTGCTC 1200 57 [23]
    R: CGATCAGAATAAGGTAAAGC
    cpDNA matK F: CGTACAGTACTTTTGTGTTTACGAG 1500 57 [24]
    R: ACCCAGTCCATCTGGAAATCTTGGTTC
    下载: 导出CSV

    表  2   试验材料的序列多态性信息

    Table  2   Sequence polymorphism information of experiment materials

    基因序列
    Gene
    sequence
    长度/
    bp
    Length
    GC占
    比/%
    GC
    proportion
    核苷酸多态性
    Nucleotide
    diversity
    变异位点数
    Variable
    site
    number
    单一突变位点数
    Singleton
    variable
    site number
    简约信息位点数
    Parsimony
    informative
    site number
    插入/缺失位点数
    Insertion/
    deletion
    site number
    ccb203 494 46.52~47.17 0.003 20 5 2 3 6
    nad2/1-2 1 247 53.90~54.69 0.000 17 1 1 0 11
    nad2/4-5 1 503 48.02~48.54 0.003 43 12 3 9 63
    nad5/4-5 1 665 45.93~46.50 0.003 95 20 10 10 6
    nad7/1-2 964 56.39~57.23 0.001 86 4 0 4 24
    matK 840 32.90~34.09 0.007 11 27 23 4 1
    合并 Total 6 713 47.79~48.31 0.003 25 69 39 30 111
    下载: 导出CSV

    表  3   试验材料的单倍型多样性

    Table  3   Haplotype diversity of experiment materials

    基因序列
    Gene
    sequence
    单倍型数量
    Haplotype
    number
    单倍型多样性
    Haplotype
    diversity
    单倍型多样性方差
    Variance of
    haplotype diversity
    单倍型多样性标准差
    Standard deviation of
    haplotype diversity
    ccb203 5 0.818 0.006 82 0.083
    nad2/1-2 2 0.182 0.020 61 0.144
    nad2/4-5 8 0.927 0.004 42 0.066
    nad5/4-5 8 0.927 0.004 42 0.066
    nad7/1-2 5 0.818 0.006 82 0.083
    matK 9 0.945 0.004 34 0.066
    合并 Total 9 0.945 0.004 34 0.066
    下载: 导出CSV

    表  4   Tajima’s D测验和Fu and Li’s D*/F*测验

    Table  4   Tajima’s D test and Fu and Li’s D*/F* test

    基因序列 Gene sequence Tajima’s D Fu and Li’s D* Fu and Li’s F* P
    ccb203 −0.321 97 −0.083 18 −0.161 10 > 0.10
    nad2/1-2 −1.128 50 −1.289 46 −1.399 19 > 0.10
    nad2/4-5 0.500 00 0.574 40 0.628 71 > 0.10
    nad5/4-5 −0.356 59 −0.514 26 −0.537 17 > 0.10
    nad7/1-2 1.018 28 1.214 66 1.312 69 > 0.10
    matK −1.627 84 −2.009 96 −2.168 40 > 0.05, < 0.10
    合并Total −0.639 26 −0.796 77 −0.858 74 > 0.10
    下载: 导出CSV

    表  5   11份试验材料的遗传距离1)

    Table  5   Genetic distance among 11 experimental materials

    样品编号
    Sample No.
    1 2 3 4 5 6 7 8 9 10
    1
    2 0.003 47
    3 0.002 99 0.003 63
    4 0.003 78 0.001 42 0.004 42
    5 0.002 99 0.005 21 0.004 73 0.005 84
    6 0.003 15 0.001 10 0.003 78 0.000 94 0.004 89
    7 0.002 52 0.003 15 0.003 63 0.003 78 0.004 26 0.003 15
    8 0.001 89 0.003 15 0.002 68 0.004 10 0.003 63 0.003 47 0.002 52
    9 0.003 47 0.003 63 0.003 15 0.003 78 0.004 89 0.003 15 0.003 15 0.003 15
    10 0.003 47 0.003 63 0.003 15 0.003 78 0.004 89 0.003 15 0.003 15 0.003 15 0.000 00
    11 0.003 47 0.003 63 0.003 15 0.003 78 0.004 89 0.003 15 0.003 15 0.003 15 0.000 00 0.000 00
     1) 1:何鲁牵牛,2:‘黄茑萝’,3:空心菜,4:‘月光花’,5:‘黄色朝颜’,6:变色牵牛,7:旋转牵牛,8:树牵牛,9:‘浙紫薯3号’,10:‘鄂薯6号’,11:‘皖薯7号’
     1) 1: Ipomoea holubii, 2: Ipomoea hederifolia var. lutea, 3: Ipomoea aquatica Forsk, 4: Ipomoea alba, 5: Ipomoea obscura Keniak, 6: Ipomoea indica, 7: Ipomoea digitata huge caudex, 8: Ipomoea carnea, 9: Ipomoea batatas ‘Zhezishu 3’, 10: Ipomoea batatas ‘Eshu 6’, 11: Ipomoea batatas ‘Wanshu 7’
    下载: 导出CSV
  • [1]

    SHEKHAR S, MISHRA D, BURAGOHAIN A K, et al. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.)[J]. Food Chemistry, 2015, 173: 957-965. doi: 10.1016/j.foodchem.2014.09.172

    [2]

    MOHANRAJ R, SIVASANKAR S. Sweet potato (Ipomoea batatas [L. ] Lam): A valuable medicinal food: A rievew[J]. Journal of Medicinal Food, 2014, 17(7): 733-741. doi: 10.1089/jmf.2013.2818

    [3]

    YANG Z, ZHU P, KANG H, et al. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.)[J]. BMC Genomics, 2020, 21(1). doi: 10.1186/s12864-020-6567-3.

    [4] 谢一芝, 郭小丁, 贾赵东, 等. 中国食用甘薯育种现状及展望[J]. 江苏农业学报, 2018, 34(6): 1419-1424. doi: 10.3969/j.issn.1000-4440.2018.06.030
    [5] 胡玲, 李强, 王欣, 等. 甘薯地方品种和育成品种的遗传多样性[J]. 江苏农业学报, 2010, 26(5): 925-935. doi: 10.3969/j.issn.1000-4440.2010.05.006
    [6] 李强, 刘庆昌, 马代夫. 甘薯近缘野生种研究利用现状及展望[J]. 分子植物育种, 2006, 4(6S): 105-110.
    [7] 曹清河, 张安, 李鹏, 等. 甘薯近缘野生种的抗病性鉴定与新型种间杂种的获得[J]. 植物遗传资源学报, 2009, 10(2): 224-229.
    [8]

    GARRIDO-CARDENAS J A, MESA-VALLE C, MANZANO-AGUGLIARO F. Trends in plant research using molecular markers[J]. Planta, 2018, 247(3): 543-557. doi: 10.1007/s00425-017-2829-y

    [9]

    YANG X S, SU W J, WANG L J, et al. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers[J]. Journal of Integrative Agriculture, 2015, 14(4): 633-641. doi: 10.1016/S2095-3119(14)60794-2

    [10] 苏一钧, 王娇, 戴习彬, 等. 303份甘薯地方种SSR遗传多样性与群体结构分析[J]. 植物遗传资源学报, 2018, 19(2): 243-251.
    [11] 季志仙, 王美兴, 范宏环, 等. 基于ISSR指纹的甘薯食用品种的遗传多样性分析[J]. 核农学报, 2014, 28(7): 1197-1202. doi: 10.11869/j.issn.100-8551.2014.07.1197
    [12] 王崇, 王连军, 苏文瑾, 等. 基于cpSSR标记的甘薯品种亲缘关系及遗传多样性分析[J]. 分子植物育种, 2020, 18(5): 1687-1696.
    [13]

    LEE K J, LEE G A, LEE J R, et al. Genetic diversity of sweet potato (Ipomoea batatas L. Lam) germplasms collected worldwide using chloroplast SSR markers[J]. Agronomy, 2019, 9(11): 725-740. doi: 10.3390/agronomy9110725

    [14]

    GUALBERTO J M, NEWTON K J. Plant mitochondrial genomes: Dynamics and mechanisms of mutation[M]//MERCHANT S S. Annual Review of Plant Biology: Vol 68. Palo alto: Annual Reviews. 2017: 225-252.

    [15]

    PELLETIER G, BUDAR F. The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering[J]. Current Opinion in Biotechnology, 2007, 18(2): 121-125. doi: 10.1016/j.copbio.2006.12.002

    [16]

    LILLY J W, BARTOSZEWSKI G, MALEPSZY S, et al. A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype[J]. Current Genetics, 2001, 40(2): 144-151. doi: 10.1007/s002940100238

    [17]

    QIN Y J, BUAHOM N, KROSCH M N, et al. Genetic diversity and population structure in Bactrocera correcta (Diptera: Tephritidae) inferred from mtDNA cox1 and microsatellite markers[J]. Scientific Reports, 2016, 6: 38476. doi: 10.1038/srep38476.

    [18]

    BOUILLÉ M, SENNEVILLE S, BOUSQUET J. Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea[J]. Tree Genetics & Genomes, 2011, 7(3): 469-484.

    [19]

    GODBOUT J, JARAMILLO-CORREA J P, BEAULIEU J, et al. A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer[J]. Molecular Ecology, 2005, 14(11): 3497-3512. doi: 10.1111/j.1365-294X.2005.02674.x

    [20]

    HU D, LUO Z. Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp.[J]. Scientia Horticulturae, 2006, 109(3): 275-281. doi: 10.1016/j.scienta.2006.02.027

    [21] 马丽, 周玉亮, 郝兆祥, 等. 石榴种质资源的matK基因序列分析[J]. 分子植物育种, 2020, 18(16): 5274-5279.
    [22]

    DUMINIL J, PEMONGE M H, PETIT R J. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA[J]. Molecular Ecology Notes, 2002, 2(4): 428-430. doi: 10.1046/j.1471-8286.2002.00263.x

    [23]

    DUMOLIN-LAPEGUE S, PEMONGE M H, PETIT R J. An enlarged set of consensus primers for the study of organelle DNA in plants[J]. Molecular Ecology, 1997, 6(4): 393-397. doi: 10.1046/j.1365-294X.1997.00193.x

    [24]

    SUN X Q, ZHU Y J, GUO J L, et al. DNA barcoding the Dioscorea in China, a vital group in the evolution of monocotyledon: Use of matK gene for species discrimination[J]. PLoS One, 2012, 7(2): e32057. doi: 10.1371/journal.pone.0032057

    [25]

    KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096

    [26]

    ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. doi: 10.1093/molbev/msx248

    [27] 刘峥, 张汉尧. 旋花科植物ITS序列分析[J]. 西部林业科学, 2012, 41(4): 70-74. doi: 10.3969/j.issn.1672-8246.2012.04.012
    [28] 俞立璇, 刘美艳, 曹清河, 等. 栽培种甘薯及其近缘野生种nrDNA ITS序列分析[J]. 植物科学学报, 2014, 32(1): 40-49.
    [29]

    JIN D P, LEE J H, XU B, et al. Phylogeography of East Asian Lespedeza buergeri (Fabaceae) based on chloroplast and nuclear ribosomal DNA sequence variations[J]. Journal of Plant Research, 2016, 129(5): 793-805. doi: 10.1007/s10265-016-0831-2

    [30] 郭亚龙, 葛颂. 线粒体nad1基因内含子在稻族系统学研究中的价值: 兼论Porteresia的系统位置[J]. 植物分类学报, 2004, 42(4): 333-344.
    [31] 陆佳妮, 赵志礼, 倪梁红, 等. 线粒体nad1/b-c及nad5/d-e在秦艽组植物中物种鉴定意义的评价[J]. 药物学报, 2019, 54(1): 166-172.
    [32]

    SNOUSSI H, DUVAL M F, GARCIA-LOR A, et al. Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm[J]. BMC Genetics, 2012: 13. doi: 10.1186/1471-2156-13-16.

    [33]

    YANG J, VÁZQUEZ L, CHEN X D, et al. Development of chloroplast and nuclear DNA markers for Chinese Oaks (Quercus Subgenus Quercus) and assessment of their utility as DNA barcodes[J]. Frontiers in Plant Science, 2017: 8. doi: 10.3389/fpls.2017.00816.

    [34]

    KORNELIUSSEN T S, MOLTKE I, ALBRECHTSEN A, et al. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data[J]. BMC Bioinformatics, 2013: 14. doi: 10.1186/1471-2105-14-289.

图(2)  /  表(5)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  10
  • PDF下载量:  671
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-22
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-07-09

目录

    /

    返回文章
    返回