• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于无人机遥感影像的沙糖橘果树提取方法研究

祁媛, 徐伟诚, 王林琳, 贾瑞昌, 兰玉彬, 张亚莉

祁媛, 徐伟诚, 王林琳, 等. 基于无人机遥感影像的沙糖橘果树提取方法研究[J]. 华南农业大学学报, 2020, 41(6): 126-133. DOI: 10.7671/j.issn.1001-411X.202007032
引用本文: 祁媛, 徐伟诚, 王林琳, 等. 基于无人机遥感影像的沙糖橘果树提取方法研究[J]. 华南农业大学学报, 2020, 41(6): 126-133. DOI: 10.7671/j.issn.1001-411X.202007032
QI Yuan, XU Weicheng, WANG Linlin, et al. Study on the extraction method of sugar tangerine fruit trees based on UAV remote sensing images[J]. Journal of South China Agricultural University, 2020, 41(6): 126-133. DOI: 10.7671/j.issn.1001-411X.202007032
Citation: QI Yuan, XU Weicheng, WANG Linlin, et al. Study on the extraction method of sugar tangerine fruit trees based on UAV remote sensing images[J]. Journal of South China Agricultural University, 2020, 41(6): 126-133. DOI: 10.7671/j.issn.1001-411X.202007032

基于无人机遥感影像的沙糖橘果树提取方法研究

基金项目: 广东省重点领域研发计划(2019B020221001);广东省科技计划(2018A050506073);广州市科技计划(201807010039)
详细信息
    作者简介:

    祁媛(1995—),女,硕士研究生,E-mail: yuanqi@stu.scau.edu.cn

    通讯作者:

    兰玉彬(1961—),男,教授,博士,E-mail: ylan@scau.edu.cn

    张亚莉(1975—),女,副教授,博士,E-mail: ylzhang@scau.edu.cn

  • 中图分类号: TP79

Study on the extraction method of sugar tangerine fruit trees based on UAV remote sensing images

  • 摘要:
    目的 

    通过无人机获取沙糖橘果园的遥感图像,快速提取果树分布位置,为果树的长势监测和产量预估提供参考。

    方法 

    以无人机拍摄的可见光遥感图像为研究对象,计算超红指数、超绿指数、超蓝指数、可见光波段差异植被指数、红绿比指数和蓝绿比指数6种可见光植被指数,使用双峰阈值法选取阈值进行果树的提取。在使用光谱指数进行识别的基础上,结合数字表面模型作为识别模型的输入变量,进行对比试验。

    结果 

    相比使用单一光谱指数,结合数字表面模型提高了果树和非果树像元的提取精度,6次波段融合后的总体精度均大于97%。超红指数与数字表面模型结合后的总体精度最高,为98.77%,Kappa系数为0.956 7,植被信息提取精度优于其他5种可见光植被指数与数字表面模型结合后的提取精度。

    结论 

    数字表面模型结合可见光植被指数的提取方法能够更深层次地挖掘遥感数据蕴含的信息量,为影像中色调相似地物的提取提供参考。

    Abstract:
    Objective 

    To obtain remote sensing image of sand sugar tangerine orchard by UAV, rapidly extract the distribution position of fruit trees, and provide references for growth monitoring and yield prediction of fruit trees.

    Method 

    The visible light remote sensing images taken by drones were used as the research object. Six visible light vegetation indexes of excess red index, excess green index, excess blue index, visible band differential vegetation index, red-green ratio index and blue-green ratio index were calculated. We used the double peak threshold method to select the threshold for fruit tree extraction. Based on the spectral index identification, digital surface model was added as input variable of the identification model, and the comparative test was conducted.

    Result 

    Compared with using a single spectral index, the addition of digital surface model improved the extraction accuracies of fruit tree and non fruit tree pixels. The total accuracies of six band fusions were all greater than 97%. The total accuracy of excess red index combined with digital surface model was the highest (98.77%) with Kappa coefficient of 0.956 7, and the vegetation extraction accuracies were superior to those of other five combinations of visible light vegetation indexes with digital surface model.

    Conclusion 

    The combination of digital surface model with visible light vegetation index can excavate more deeply the information contained in the remote sensing data, and provide a reference for the extraction of similar tonal features in the image.

  • 图  1   试验地概况

    Figure  1.   The overview of experimental site

    图  2   试验数据采集

    Figure  2.   Experiment data collection

    图  3   正射图和数字表面模型

    Figure  3.   Orthophoto and digital surface model

    图  4   双峰阈值法示意图

    Figure  4.   Schematic diagram of the double peak threshold method

    图  5   数字表面模型高程示意图

    Figure  5.   Elevation diagram of digital surface model

    图  6   6种可见光植被指数计算结果

    Figure  6.   Calculation results of six visible light vegetation indexes

    图  7   6种可见光植被指数统计直方图

    Figure  7.   Statistical histograms of six visible light vegetation indexes

    图  8   6种可见光植被指数的植被信息提取结果

    绿色部分代表果树,灰色部分代表非果树

    Figure  8.   Vegetation extraction results of six visible light vegetation indexes

    The green part indicates fruit tree, the gray part indicates non fruit tree

    图  9   结合数字表面模型的6种可见光植被指数信息提取结果

    绿色部分代表果树,黑色部分代表非果树

    Figure  9.   Extraction results of six visible light vegetation indexes combined with digital surface model

    The green part indicates fruit tree, the black part indicates non fruit tree

    表  1   可见光植被指数

    Table  1   Vegetation indexes based on visible spectrum

    植被指数 Vegetation index 表达式1) Equation 理论区间 Theory interval
    超红指数 Excess red index $1.4R - G$ [−255, 357]
    超绿指数 Excess green index $2G - R - B$ [−255, 510]
    超蓝指数 Excess blue index $1.4B - G$ [−255, 357]
    可见光波段差异植被指数 Visible band differential vegetation index $\dfrac{ {2G - R - B} }{ {2G + R + B} }$ [−1, 1]
    红绿比指数 Red-green ratio index $\dfrac{R}{G}$ [−1, 1]
    蓝绿比指数 Blue-green ratio index $\dfrac{B}{G}$ [−1, 1]
     1) R:红光波段,G:绿光波段,B:蓝光波段
     1) R: Red light wave band, G: Green light wave band, B: Blue light wave band
    下载: 导出CSV

    表  2   基于感兴趣区域的6种可见光植被指数的统计值

    Table  2   Statistics of six visible light vegetation indexes based on region of interest

    植被指数
    Vegetation index
    果树 Fruit tree 非果树 Non fruit tree
    平均值
    Mean
    标准差
    Standard deviation
    平均值
    Mean
    标准差
    Standard deviation
    超红指数 Excess red index −27.293 4 11.959 8 46.642 1 30.383 9
    超绿指数 Excess green index 115.230 7 25.873 2 9.023 5 18.045 8
    超蓝指数 Excess blue index −39.266 7 15.487 6 44.257 4 28.460 9
    可见光波段差异植被指数 Visible band differential vegetation index 0.339 2 0.087 9 0.021 8 0.046 3
    红绿比指数 Red-green ratio index 0.532 7 0.097 3 0.960 9 0.119 6
    蓝绿比指数 Blue-green ratio index 0.466 5 0.104 1 0.960 5 0.130 6
    下载: 导出CSV

    表  3   6种可见光植被指数的植被提取精度评价

    Table  3   Accuracy assessments of vegetation extraction for six visible light vegetation indexes

    植被指数
    Vegetation index
    阈值
    Threshold
    精度/% Accuracy Kappa系数(K)
    Kappa coefficient
    果树
    Fruit tree
    非果树
    Non fruit tree
    总体
    Total
    超红指数 Excess red index −1.886 99.78 90.63 95.18 0.903 6
    超绿指数 Excess green index 50.000 99.68 87.58 93.60 0.872 0
    超蓝指数 Excess blue index −4.675 99.77 94.62 97.18 0.943 6
    可见光波段差异植被指数
    Visible band differential vegetation index
    0.133 99.98 88.28 94.10 0.882 0
    红绿比指数 Red-green ratio index 0.724 99.84 89.25 94.52 0.890 4
    蓝绿比指数 Blue-green ratio index 0.682 99.79 91.40 95.57 0.911 4
    下载: 导出CSV

    表  4   6种可见光植被指数融合数字表面模型提取精度评价

    Table  4   Accuracy assessments of vegetation extraction for six visible vegetation indexes combined with digital surface model

    植被指数
    Vegetation index
    精度/% Accuracy Kappa系数(K)
    Kappa coefficient
    果树 Fruit tree 非果树 Non fruit tree 总体 Total
    超红指数 Excess red index 99.46 98.08 98.77 0.956 7
    超绿指数 Excess green index 99.28 95.26 97.27 0.945 4
    超蓝指数 Excess blue index 99.45 95.43 97.44 0.948 9
    可见光波段差异植被指数
    Visible band differential vegetation index
    99.76 95.58 97.67 0.953 4
    红绿比指数 Red-green ratio index 99.31 96.37 97.84 0.956 8
    蓝绿比指数 Blue-green ratio index 99.23 96.45 97.84 0.956 8
    下载: 导出CSV
  • [1] 牛亚晓, 张立元, 韩文霆, 等. 基于无人机遥感与植被指数的冬小麦覆盖度提取方法[J]. 农业机械学报, 2018, 49(4): 212-221. doi: 10.6041/j.issn.1000-1298.2018.04.024
    [2]

    GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens Environ, 2002, 80(1): 76-87. doi: 10.1016/S0034-4257(01)00289-9

    [3]

    YANG H B, ZHAO J, LAN Y B, et al. Fraction vegetation cover extraction of winter wheat based on spectral information and texture features obtained by UAV[J]. Int J Precis Agric Aviat, 2019, 2(2): 54-61.

    [4]

    TAHIR M N, LAN Y B, ZHANG Y L, et al. Real time estimation of leaf area index and groundnut yield using multispectral UAV[J]. Int J Precis Agric Aviat, 2020, 3(1): 1-6.

    [5]

    XU W, LAN Y, LI Y, et al. Classification method of cultivated land based on UAV visible light remote sensing[J]. Int J Agr Biol Eng, 2019, 12(3): 103-109.

    [6]

    CHOI S K, LEE S K, JUNG S H, et al. Estimation of fractional vegetation cover in sand dunes using multi-spectral images from fixed-wing UAV[J]. Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography, 2016, 34(4): 431-441. doi: 10.7848/ksgpc.2016.34.4.431

    [7]

    ZHANG D, MANSARAY L R, JIN H, et al. A universal estimation model of fractional vegetation cover for different crops based on time series digital photographs[J]. Comput Electron Agr, 2018, 151: 93-103. doi: 10.1016/j.compag.2018.05.030

    [8] 高永平, 康茂东, 何明珠, 等. 基于无人机可见光波段对荒漠植被覆盖度提取的研究[J]. 兰州大学学报(自然科学版), 2018, 54(6): 770-775.
    [9]

    MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications[J]. Comput Electron Agr, 2008, 63(2): 282-293. doi: 10.1016/j.compag.2008.03.009

    [10]

    WOEBBECKE D M, MEYER G E, VON BARGEN K, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269. doi: 10.13031/2013.27838

    [11]

    GUIJARRO M, PAJARES G, RIOMOROS I, et al. Automatic segmentation of relevant textures in agricultural images[J]. Comput Electron Agr, 2011, 75(1): 75-83. doi: 10.1016/j.compag.2010.09.013

    [12]

    GAMON J A, SURFUS J S. Assessing leaf pigment content and activity with a reflectometer[J]. New Phytol, 1999, 143(1): 105-117. doi: 10.1046/j.1469-8137.1999.00424.x

    [13]

    SELLARO R, CREPY M, TRUPKIN S A, et al. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis[J]. Plant Physiol, 2010, 154(1): 401-409. doi: 10.1104/pp.110.160820

    [14]

    PUREVDORJ T, TATEISHI R, ISHIYAMA T, et al. Relationships between percent vegetation cover and vegetation indices[J]. Int J Remote Sens, 1998, 19(18): 3519-3535. doi: 10.1080/014311698213795

    [15] 赵德升, 毛罕平, 陈树人, 等. 杂草识别中背景分割方法的比较研究[J]. 农机化研究, 2009(11): 76-79.
    [16] 邓书斌, 陈秋锦. EVVI遥感图像处理方法[M]. 北京: 高等教育出版社, 2014: 204.
    [17] 王民, 樊潭飞, 贠卫国, 等. PFWG 改进的 CNN 多光谱遥感图像分类[J]. 激光与光电子学进展, 2019, 56(3): 031003.
图(9)  /  表(4)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  4
  • PDF下载量:  1271
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-11-09

目录

    /

    返回文章
    返回