• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻空间诱变与重离子诱变生物学效应及突变体定向筛选

陈淳, 严贤诚, 罗文龙, 黄翠红, 周丹华, 周利斌, 李文建, 王慧, 陈志强, 郭涛

陈淳, 严贤诚, 罗文龙, 等. 水稻空间诱变与重离子诱变生物学效应及突变体定向筛选[J]. 华南农业大学学报, 2021, 42(1): 49-60. DOI: 10.7671/j.issn.1001-411X.202004012
引用本文: 陈淳, 严贤诚, 罗文龙, 等. 水稻空间诱变与重离子诱变生物学效应及突变体定向筛选[J]. 华南农业大学学报, 2021, 42(1): 49-60. DOI: 10.7671/j.issn.1001-411X.202004012
CHEN Chun, YAN Xiancheng, LUO Wenlong, et al. Biological effect and targeted mutation screening of space-induced mutagenesis and heavy ion radiation in rice[J]. Journal of South China Agricultural University, 2021, 42(1): 49-60. DOI: 10.7671/j.issn.1001-411X.202004012
Citation: CHEN Chun, YAN Xiancheng, LUO Wenlong, et al. Biological effect and targeted mutation screening of space-induced mutagenesis and heavy ion radiation in rice[J]. Journal of South China Agricultural University, 2021, 42(1): 49-60. DOI: 10.7671/j.issn.1001-411X.202004012

水稻空间诱变与重离子诱变生物学效应及突变体定向筛选

基金项目: 广东省重点研发计划(2018B020206002);国家重点研发计划(2016YFD0102102)
详细信息
    作者简介:

    陈淳(1978—),女,助理研究员,硕士,E-mail: chchun@scau.edu.cn

    严贤诚(1992—),男,硕士研究生,E-mail:10252196@qq.com;†表示同等贡献

    通讯作者:

    陈志强(1956—),男,教授,硕士,E-mail: zqchen@scau.edu.cn

    郭 涛(1978—),男,教授,博士,E-mail: guoguot@scau.edu.cn

    †对本文贡献相同

  • 中图分类号: S511

Biological effect and targeted mutation screening of space-induced mutagenesis and heavy ion radiation in rice

  • 摘要:
    目的 

    从不同诱变世代比较空间诱变和重离子诱变对水稻生物学效应及后代变异频率的差异,为水稻诱变育种提供一定的方法和理论指导。

    方法 

    对水稻纯系品种‘华航31号’干种子进行空间诱变和不同剂量重离子诱变处理,以未诱变处理的种子为对照,对诱变一代进行表型及细胞学诱变效应的分析;对诱变二代直链淀粉含量及粒型性状进行表型和基因型定向筛选,比较2种诱变处理的性状变异频率。

    结果 

    空间诱变一代的种子活力指数比对照下降了14.62%;重离子诱变一代的种子活力指数随辐射剂量增加呈现马鞍型效应曲线,其中10 Gy重离子辐射剂量下种子活力指数比对照下降了14.92%,与空间诱变的诱变效应相近。空间诱变二代粒型和直链淀粉含量的突变频率分别为4.14%和1.61%,80 Gy重离子辐射诱变二代粒型和直链淀粉含量的突变频率分别为4.88%和1.55%。利用HRM技术扫描了水稻直链淀粉含量Wx基因的4个位点共673 bp序列,在空间诱变的4 736份样本中发现3个SNP变异,突变密度为1/1063.83 kb;在重离子诱变4 848份样本中发现4个SNP变异,突变密度为1/815.68 kb。

    结论 

    2种诱变处理均可诱发水稻产生性状变异。空间诱变的生理损伤类似于低剂量重离子辐射,而诱发变异的频率与高剂量重离子辐射相近。

    Abstract:
    Objective 

    To compare the biological effects and variation frequency of two mutagenesis methods, including space mutation and heavy ion radiation, in different generations of rice (Oryza sativa L.), and provide some methods and theoretical guidances for rice mutation breeding.

    Method 

    The dry seeds of pure line rice variety ‘Huahang 31’ were treated using space mutation and different dose of heavy ion radiation, and the seeds without mutation treatment were used as the control. The phenotypic and cytological mutagenic effects of the 1st generation of mutation (M1) were analyzed. The amylose content and grain shape trait of the 2nd generation of mutation (M2) were screened by phenotypic and genotypic targeted screening. The variation frequencies in M2 of two mutation treatments were compared.

    Result 

    The seed vigor index of space mutation M1 was 14.62% lower than that of the control. The seed vigor index of heavy ion radiation M1 showed a saddle effect curve with the increase of radiation dose, and the seed vigor index of 10 Gy heavy ion radiation M1 was 14.92% lower than that of the control which was like the mutation effect of space mutation. The grain type and amylose content mutation frequencies of space-induced M2 were 4.14% and 1.61% respectively, while the grain type and amylose content mutation frequencies of 80 Gy heavy ion radiation were 4.88% and 1.55% respectively. When HRM technology was used to scan the 673 bp sequences of four intervals of Wx gene, three SNP mutations were found in 4 736 samples of space-induced with a mutation density of 1/1063.83 kb. Four SNP mutations were found in 4 848 samples of heavy ion radiation with a mutation density of 1/815.68 kb.

    Conclusion 

    Two kinds of mutagenic treatments can induce the character variations of rice. The physiological effects of space-induced mutagenesis M1 is similar to low-dose heavy ion radiation, and the mutation frequency of M2 is similar to high-dose heavy ion radiation.

  • 图  1   不同剂量重离子辐射的种子发芽势和芽长

    Figure  1.   The germination potential and bud length of rice seeds treated by different doses of heavy ion radiation

    图  2   诱变处理后水稻M1代植株根尖细胞有丝分裂染色体异常

    a:断片;b:单桥;c:多桥;d,e:后期单桥;f:染色体落后;g:不均等分裂;h:微核

    Figure  2.   Chromosomal abnormality of apical mitosis of root tip cells of contemporary rice plants after mutagenic treatment

    a: Fragment; b: Single bridge; c: Polybridge; d,e: Single bridge at anaphase; f: Chromosome lag; g: Unequal cell division; h: Micronucleus

    图  3   不同比例DNA混合池Wx基因的HRM检测结果

    红色:1∶1混合池;橙色:3∶1混合池;松绿:7∶1混合池;灰色:9∶1混合池;粉色:5∶1混合池;深红:11∶1混合池;绿色:Wxb基因;蓝色:Wxa基因

    Figure  3.   HRM detection result of DNA mixed pool with different proportion

    Red: 1∶1; Orange: 1∶1;Turquoise: 7∶1; Grey: 9∶1; Pink: 5∶1; Dark red: 11∶1; Green: Wxb gene; Blue: Wxa gene

    图  4   DNA混合池的4对巢式PCR引物扩增产物的HRM检测结果

    a:Wxab-O和Wxab-I引物扩增产物检测;b:EX4-O和EX4-I引物扩增产物检测;c:EX9-O和EX9-I引物扩增产物检测;d:EX10-O和EX10-I引物扩增产物检测

    Figure  4.   HRM detections of four pairs of nested PCR primer amplification products in DNA mixing cell

    a: Detecting amplifications of primers Wxab-O and Wxab-I; b: Detecting amplifications of primers EX4-O and EX4-I; c: Detecting amplifications of primers EX9-O and EX9-I; d: Detecting amplifications of primers EX10-O and EX10-I

    图  5   重离子诱变exon 10突变体序列分析结果

    a:检测区域的序列分析,外显子区域由绿色标注,差异位点由红色标注;b:exon 10翻译的蛋白序列分析;c:对照Sanger测序峰图;d:突变体Sanger测序峰图

    Figure  5.   The results of sequence analysis of exon 10 mutant induced by heavy ion

    a: Sequence analysis, green for exon and red for mutation site; b: Protein sequence of exon 10; c: Sanger sequencing results of CK; d: Sanger sequencing results of the mutant

    表  1   用于HRM检测的特异引物信息

    Table  1   Specific primer information for HRM detection

    引物名称
    Primer
    name
    检测位点
    Detection
    site
    前引物(5′→3′)
    Former
    primer
    后引物(5′→3′)
    Latter
    primer
    片段大小/bp
    Fragment
    size
    Wxab-O WxaWxb
    差异位点
    GAGGGAGAGGGGGAGAGAGAGATC TCCAGCCCAACACCTTACAGAAAT 348
    Wxab-I CTTCACTTCTCTGCTTGTGTTGTT CATGTGATCGATCTGAATAAGAGG 110
    EX4-O exon 4 CAGATCATCACAAGATCGATTAGC AACCTGAAATCACCAGTGGAAG 286
    EX4-I CCAAGTTTTTGTGGTGCAATTC TAAGCTCAGTCCAACTGCTAAATG 204
    EX9-O exon 9 CGACGGGTATGAGTAAGATTCTAAG CATTCGTTCTTACCGTGGTTG 384
    EX9-I AGATCCTTTTGAGCTGACAACC GTACTTGGCGGTGATGTACTTG 294
    EX10-O exon 10 AGAACGAATGCATTCTTCACAAGA GCCTCACCCCTTCTAATTATTTGA 421
    EX10-I ACAAGGCAAGAATGAGTGACAA GCATATCGTGCAAGTGTGTCTT 247
    下载: 导出CSV

    表  2   空间诱变及重离子诱变对种子活力的影响1)

    Table  2   Effects of space mutation and heavy ion mutation on seed vigor

    处理
    Treatment
    发芽势/%
    Germination potential
    发芽率/%
    Germination rate
    芽长/cm
    Bud length
    发芽指数
    Germination index
    活力指数
    Vigor index
    CK 94.02±2.45 (0.00) 100.00±0.00 (0.00) 6.11±0.09 (0.00) 37.19 (0.00) 227.32 (0.00)
    SP 100.00±0.00 (6.36) 100.00±0.00 (0.00) 5.10±0.08** (−16.53) 38.06 (2.34) 194.08 (−14.62)
    5 87.29±1.29 (−7.17) 97.07±0.07 (−2.93) 5.69±0.16* (−6.98) 36.38 (−2.18) 206.85 (−9.01)
    10 86.14±1.82* (−8.39) 95.15±3.00 (−4.85) 5.59±0.14* (−8.48) 34.58 (−7.04) 193.40 (−14.92)
    20 81.32±2.01** (−13.51) 96.20±1.95 (−3.80) 5.52±0.11** (−9.72) 33.80 (−9.12) 186.52 (−17.95)
    40 87.43±3.27 (−7.02) 95.37±2.30 (−4.63) 5.83±0.13 (−4.67) 35.70 (−4.01) 208.00 (−8.50)
    80 82.69±0.97** (−12.06) 96.29±2.75 (−3.71) 5.35±0.16** (−12.42) 34.39 (−7.55) 184.09 (−19.02)
    160 80.47±1.83** (−14.42) 95.56±2.36 (−4.44) 5.17±0.16** (−15.39) 32.87 (−11.62) 169.99 (−25.22)
     1) CK: 对照;SP: 空间诱变;5、10、20、40、80和160分别代表重离子辐射不同剂量(Gy);括号内数据为相对效应,相对效应=(处理−对照)/对照×100%;“*”“**”分别表示与CK在0.05、0.01水平差异显著
     1) CK: Control; SP: Space-induced mutation; 5,10,20,40,80 and 160 represented different doses of heavy ion radiation(Gy) respectively; The data in brackets were relative effects,relative effect=(treatment – CK)/CK ×100%;“*”and“**”represented significant differences with the control at the levels of 0.05 and 0.01 respectively
    下载: 导出CSV

    表  3   空间诱变和重离子诱变的水稻种子M1代植株主要农艺性状 1)

    Table  3   The main agronomic characters of contemporary plants of rice seeds treated by space mutation and heavy ion mutation

    处理
    Treatment
    株高/cm
    Plant
    height
    穗长/cm
    Panicle
    length
    有效穗数
    No. of productive
    panicle
    每穗粒数
    No. of spikelet
    per panicle
    结实率/%
    Setting
    percentage
    谷粒长宽比
    Grain length-
    width ratio
    千粒质量/g
    1000-grain
    weight
    CK 119.17±1.48 30.22±0.81 8.33±1.45 232.51±11.95 80.03±1.18 3.99±0.02 21.47±0.13
    SP 120.30±1.90 26.50±0.54** 8.40±0.51 184.92±7.62** 84.94±1.61 3.98±0.06 21.18±0.42
    5 121.20±1.46 27.33±0.61** 10.00±0.45 161.29±14.02** 84.56±0.54 4.00±0.02 21.88±0.16
    10 121.60±1.21 28.50±0.54 7.60±0.68 193.85±14.00** 84.55±2.61 3.96±0.01 22.00±0.17
    20 121.40±0.98 28.47±0.33 8.00±0.71 193.24±6.63** 84.02±1.75 3.92±0.02 22.24±0.07
    40 118.40±0.81 28.34±0.61 8.40±0.81 183.72±9.25** 82.63±1.61 3.92±0.05 22.00±0.25
    80 121.25±0.63 28.76±0.32 8.25±0.48 201.59±14.05** 63.13±5.36** 3.94±0.03 21.83±0.17
    160 121.30±1.02 26.79±0.87** 7.20±0.66 189.71±14.31** 48.69±5.13** 3.93±0.02 21.36±0.34
     1) CK: 对照;SP: 空间诱变;5、10、20、40、80和160分别代表重离子辐射不同剂量(Gy);表中数据为平均值±标准误,“**”表示与CK在0.01水平差异显著
     1)CK: Control; SP: Space-induced mutation; 5,10,20,40,80 and 160 represented different doses of heavy ion radiation (Gy) respectively;The data in the table were mean value ± standard error,and“**”represented significant difference with the control at the level of 0.01
    下载: 导出CSV

    表  4   空间诱变和重离子诱变对水稻M1代植株根尖细胞的影响1)

    Table  4   Effects of space mutation and heavy ion mutation on root tip cells of contemporary rice plants

    处理
    Treatment
    有丝分裂指数/%
    Mitotic
    index
    微核千分率/‰
    Permillage of
    micronucleus
    染色体畸变率/%
    Aberration rate
    of chromosome
    染色体畸变类型2)Aberrant types of chromosome
    双桥或多桥
    Double bridge
    or poly bridge
    断片
    Fragment
    落后染色体
    Laggard
    chromosome
    不均等分裂
    Unequal cell
    division
    CK 5.32±0.27 0.38±0.18 1.25±0.50 1(0.25) 4(1.00) 0(0) 0(0)
    SP 5.26±0.31 1.12±0.32 3.28±0.92* 1(0.25) 9(2.00) 4(0.75) 1(0.25)
    5 5.10±0.34 1.23±0.47 5.25±0.92* 1(0.25) 11(2.75) 3(0.75) 1(0.25)
    10 5.15±0.34 1.82±0.44 6.25±1.08** 5(1.25) 8(2.00) 8(2.00) 2(0.50)
    20 4.90±0.32 2.56±0.46* 7.00±1.17** 4(1.00) 16(4.00) 5(1.25) 0(0)
    40 4.63±0.24 3.61±0.72** 7.75±1.43** 4(1.00) 19(4.75) 4(1.00) 2(0.50)
    80 4.29±0.56 4.43±0.59** 10.00±0.58** 6(1.50) 20(5.00) 5(1.25) 6(1.50)
    160 3.89±0.26* 5.81±0.84** 13.25±1.82** 6(1.50) 16(4.00) 10(2.50) 16(4.00)
     1) CK: 对照;SP: 空间诱变;5、10、20、40、80和160分别代表重离子辐射不同剂量(Gy);表中数据为平均值±标准误,“*”“**”分别表示与CK在0.05、0.01水平差异显著;2) 表中括号里的数值表示各畸变类型的细胞数(括号外数值)占所观察分裂期细胞总数的百分比(%)
     1) CK: Control; SP: Space-induced mutation; 5, 10, 20, 40, 80 and 160 represented different doses of heavy ion radiation (Gy) respectively; The data in the table was mean value ± standard error, “*” and “**” represented significant differences with the control at the levels of 0.05 and 0.01 respectively; 2) The values in brackets represented the ratios of the number of abnormal cells (values outside brackets) to total cells in cell division(%)
    下载: 导出CSV

    表  5   空间诱变及重离子诱变水稻M2代粒型变异

    Table  5   Grain type variation in the second generation of rice seeds treated by space mutation and heavy ion mutation

    处理1)
    Treatment
    粒型
    Grain type
    平均值( $\bar x $)
    Average
    value
    标准差(s)
    Standard
    deviation
    变异幅度
    Range of
    variation
    变异系数/%
    Coefficient of
    variation
    F 筛选范围2)
    Range of screening
    < $\bar x -3s$ > $\bar x+3s $
    SP 粒长 Grain length/mm 9.69 0.134 9 8.70~11.00 1.39 0.67
    粒宽 Grain width/mm 2.35 0.023 0 2.20~2.65 0.98 2.95
    粒长宽比 Grain length to width 4.13 0.064 7 3.70~4.68 1.57 0.08
    M 粒长 Grain length/mm 9.72 0.144 1 9.05~12.00 1.48 0.52
    粒宽 Grain width/mm 2.35 0.035 2 2.00~3.00 1.50 0.51
    粒长宽比 Grain length to width 4.13 0.087 7 3.08~5.11 2.12 0.05
    CK 粒长 Grain length/mm 9.69 0.102 9 9.50~9.85 1.06 <9.3764 >9.9936
    粒宽 Grain width/mm 2.35 0.033 3 2.30~2.40 1.42 <2.2500 >2.4500
    粒长宽比 Grain length to width 4.12 0.073 4 4.02~4.28 1.78 <3.9017 >4.3424
     1)SP: 空间诱变,M:80 Gy重离子诱变,CK: 对照;2) $\bar x $:对照的平均值
     1) SP:Space-induced mutation, M: 80 Gy heavy ion mutation, CK: Control; 2) $\bar x $: Mean value of the control
    下载: 导出CSV

    表  6   空间诱变和重离子诱变水稻M2代直链淀粉含量变异

    Table  6   Variation of amylose content in the second generation of rice seeds treated by space mutation and heavy ion mutation

    处理1)
    Treatment
    w(直链淀粉)/%
    Amylose content
    标准差(s)
    Standard deviation
    变异幅度
    Range of variation
    变异系数/%
    Coefficient of variation
    F 筛选范围2)
    Range of screening
    < $\bar x-3s $ > $\bar x+3s $
    SP 20.78 2.8957 11.91~30.81 13.94 2.97
    M 20.80 2.8458 11.64~30.74 13.68 2.51
    CK 20.92 2.2281 16.87~25.92 10.65 <14.239 7 >27.608 2
    1) SP: 空间诱变,M:80 Gy重离子诱变,CK: 对照;2) $\bar x $:对照的平均值
    1) SP:Space-induced mutation, M: 80 Gy heavy ion mutation, CK: Control; 2) $\bar x $: Mean value of the control
    下载: 导出CSV
  • [1]

    ZHAO K, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2(1): 467. doi: 10.1038/ncomms1467

    [2]

    GLASZMANN J C, KILIAN B, UPADHYAYVA H D, et al. Accessing genetic diversity for crop improvement[J]. Current Opinion in Plant Biology, 2010, 13(2): 167-173. doi: 10.1016/j.pbi.2010.01.004

    [3] 刘录祥, 王晶, 赵林姝, 等. 作物空间诱变效应及其地面模拟研究进展[J]. 核农学报, 2004, 18(4): 247-251. doi: 10.3969/j.issn.1000-8551.2004.04.002
    [4] 周利斌, 李文建, 曲颖, 等. 重离子束辐照育种研究进展及发展趋势[J]. 原子核物理评论, 2008(2): 71-76.
    [5] 陈志强, 郭涛, 刘永柱, 等. 水稻航天育种研究进展与展望[J]. 华南农业大学学报, 2009, 30(1): 7-11.
    [6] 李东芳, 倪丕冲, 沈桂芳. 水稻航天诱变育种及其机理研究的进展与展望[J]. 生物技术通报, 2004(3): 23-25. doi: 10.3969/j.issn.1002-5464.2004.03.006
    [7] 樊秋玲, 刘敏. 空间育种研究进展[J]. 航天医学与医学工程, 2002, 15(3): 231-234. doi: 10.3969/j.issn.1002-0837.2002.03.020
    [8] 史金铭. 空间和重离子辐射环境的诱变效应与DNA甲基化变化的关联[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [9]

    OGATA T, TESHIMA T, KAGAWA K, et al. Particle irradiation suppresses metastatic potential of cancer cells[J]. Cancer Research, 2005, 65(1): 113-120.

    [10]

    SHI J M, LU W H, SUN Y Q. Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa)[J]. Life Sciences in Space Research, 2014(1): 74-79.

    [11]

    WEI L, YANG Q, XIA H, et al. Analysis of cytogenetic damage in rice seeds induced by energetic heavy ions on-ground and after spaceflight[J]. Journal of Radiation Research, 2006, 47(3/4): 273-278. doi: 10.1269/jrr.0613

    [12] 王巍. 空间诱导水稻蛋白变化特征及空间辐射地基模拟诱因分析[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [13] 严文潮, 徐建龙, 俞法明, 等. 不同早籼基因型水稻的空间诱变效应研究[J]. 核农学报, 2004, 18(3): 174-178. doi: 10.3969/j.issn.1000-8551.2004.03.005
    [14] 刘向东, 卢永根. 整体荧光原位杂交用于检测水稻特异DNA程序的研究[J]. 华南农业大学学报, 1998, 19(3): 1-4.
    [15]

    BUSH S M, KRYSAN P J. ITILLING: A personalized approach to the identification of induced mutations in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 25-35. doi: 10.1104/pp.110.159897

    [16]

    SIMKO I. High-resolution DNA melting analysis in plant research[J]. Trends in Plant Science, 2016, 21(6): 528-537. doi: 10.1016/j.tplants.2016.01.004

    [17] 马良勇, 季芝娟, 曾宇翔, 等. 不同航天器搭载对籼稻诱变效果的比较[J]. 核农学报, 2011, 25(1): 7-11.
    [18] 刘永柱, 许立超, 郭涛, 等. 2个三系杂交稻保持系航天诱变效应的研究[J]. 华南农业大学学报, 2013, 34(3): 292-299. doi: 10.7671/j.issn.1001-411X.2013.03.003
    [19] 俞法明, 严文潮, 毛雪琴, 等. 利用空间诱变技术进行早籼稻新品种的改良[J]. 核农学报, 2014, 28(6): 949-954. doi: 10.11869/j.issn.100-8551.2014.06.0949
    [20] 黄永相, 郭涛, 蔡金洋. 空间环境和60Co-γ辐照对水稻稻米品质的诱变效应[J]. 核农学报, 2013, 27(6): 709-714. doi: 10.11869/hnxb.2013.06.0709
    [21]

    XU X, LIU B, ZHANG L, et al. Mutagenic effects of heavy ion irradiation on rice seeds[J]. Nuclear Instruments & Methods in Physics Research, 2012, 290(1): 19-25.

    [22] 卢明. 低能重离子C和Li及Co-γ射线对水稻的生物学效应研究[D]. 长沙: 湖南农业大学, 2005.
    [23] 梅曼彤, 邓红, 卢永根. 高能重离子辐射对水稻的生物学效应[J]. 作物学报, 1995, 21(3): 307-314. doi: 10.3321/j.issn:0496-3490.1995.03.008
    [24] 程维民, 刘斌美, 叶亚峰. 重离子辐照创建水稻直链淀粉、蛋白质突变系的研究[J]. 中国农学通报, 2016, 6(32): 86-90.
    [25] 杨瑰丽, 陈莹, 郭涛, 等. 碳离子束辐照水稻诱变效应及突变体的筛选[J]. 华南农业大学学报, 2018, 39(2): 29-33. doi: 10.7671/j.issn.1001-411X.2018.02.005
    [26]

    MANI S, TABIL L G, SOKHANSANJ S. Mechanical properties of corn stover grind[J]. Transactions of the ASAE, 2004, 47(6): 1983-1990. doi: 10.13031/2013.17786

    [27] 易继财, 庄楚雄, 姚涓, 等. 空间搭载诱导水稻种子突变的分子标记多态性分析[J]. 生物物理学报, 2002, 18(4): 478-483. doi: 10.3321/j.issn:1000-6737.2002.04.019
    [28] 骆艺, 王旭杰, 梅曼彤, 等. 空间搭载水稻种子后代基因组多态性及其与空间重离子辐射关系的探讨[J]. 生物物理学报, 2006, 22(2): 131-138. doi: 10.3321/j.issn:1000-6737.2006.02.010
    [29] 刘自增, 吴周良, 阎萍, 等. 高分辨率熔解曲线分析应用的研究进展[J]. 中国畜牧兽医, 2013, 40(8): 105-111. doi: 10.3969/j.issn.1671-7236.2013.08.024
    [30] 李贵成, 王林辉, 罗红兵. 重离子辐射玉米种子的细胞学观察[J]. 湖南农业大学学报(自然科学版), 2007, 33(5): 48-50.
    [31]

    LANDAU A, LENCINA F, PACHECO M G, et al. Plastome mutations and recombination events in barley chloroplast mutator seedlings[J]. Journal of Heredity, 2016, 107(3): 266-273. doi: 10.1093/jhered/esw003

    [32]

    BOTTICELLA E, SESTILI F, HEMANDEZ-LOPEZ A, et al. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes[J]. BMC Plant Biology, 2011, 11(1): 1-14. doi: 10.1186/1471-2229-11-1

    [33]

    KIM S I, TAI T H. Identification of novel rice low phytic acid mutations via TILLING by sequencing[J]. Molecular Breeding, 2014, 34(4): 1731-1732. doi: 10.1007/s11032-014-0187-z

    [34] 王彩芬, 马晓玲, 安永平, 等. TILLING术在水稻耐盐基因SKC1突变体筛选中的应用[J]. 作物杂志, 2013(5): 66-70. doi: 10.3969/j.issn.1001-7283.2013.05.019
    [35]

    HWANG J E, JANG D S, LEE K J, et al. Identification of gamma ray irradiation-induced mutations in membrane transport genes in a rice population by TILLING[J]. Genes & Genetic Systems, 2016, 91(5): 245-256.

    [36]

    DU Y, LI W, YU L, et al. Mutagenic effects of carbon-ion irradiation on dry Arabidopsis thaliana seeds[J]. Mutation Research, 2014, 759: 28-36. doi: 10.1016/j.mrgentox.2013.07.018

图(5)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-01-09

目录

    Corresponding author: GUO Tao, guoguot@scau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回