Relationships between Saposhnikovia divaricata chromone content and soil factors in different regions
-
摘要:目的
分析防风药效成分与土壤因子的相关性,筛选影响药效成分的主导因子。
方法利用HPLC法测定16个产地2年生防风根中4种色原酮(升麻素苷、升麻素、5−O−甲基维斯阿米醇苷、亥茅酚苷)含量,测定根际土壤15种土壤因子,通过相关性分析、聚类分析和多重线性回归分析研究防风色原酮含量与土壤因子的关系。
结果产自河北大屯乡、河北金沟屯、山东烟台、吉林白城和内蒙文钟镇的防风色原酮含量较高,其他10个产地的稍低,宁夏隆德的最低;防风色原酮总量与土壤电导率、有效磷含量和有效钙含量呈显著负相关(P<0.05),与有效锰含量呈显著正相关(P<0.05)。将16个产地分为四大产区:吉林长春产区、山东烟台产区、宁夏隆德产区和其他产区(包括内蒙古、河北、辽宁等)。有效磷、有效锰和全磷含量可以解释防风总色原酮信息的71.8%。
结论不同产地防风药材有效成分含量具有显著差异,在药材有效成分形成过程中土壤有效磷和有效锰起重要作用。
Abstract:ObjectiveTo study the correlations between soil factors and effective components of Saposhnikovia divaricata, and screen out the leading factors affecting medicinal ingredients.
MethodThe contents of four kinds of chromone (prim-O-glucosylcimifugin, cimifugin, 5-O-methylvisamminol, sec-O-glucosylhamaudol) in two-year-old S.divaricata from 16 regions were determined by HPLC , and 15 soil factors in rhizosphere soil were measured The relationships between chromone contents of S.divaricata and soil factors were studied by correlation analysis, cluster analysis and multiple linear regression analysis.
ResultS.divaricata of Datun Town in Hebei, Jingoutun in Hebei, Yantai in Shandong, Baicheng in Jilin and Wenzhong Town in Inner Mongolia had higher chromone contents. S.divaricata of Longde in Ningxia had the lowest content while S. divaricata in other ten regions had the medium chromone contents. The total chromone content of S.divaricata was significantly negatively correlated with soil conductivity, available phosphorus content and available calcium content (P<0.05), and positively correlated with available manganese content (P<0.05). The 16 regions were divided into four production areas including production area of Changchun in Jilin, production area of Longde in Ningxia, production area of Yantai in Shandong and other production areas (including Inner Mongolia, Hebei, Liaoning, etc.). Available phosphorus, available manganese and total phosphorus contents could explained 71.8% of the information of total chromone inS. divaricata .
ConclusionThere are significant differences in the qualities of S.divaricata from different regions. Available phosphorus and available manganese may play important roles in the formation of effective components of S. divaricata .
-
-
图 1 不同产地防风色原酮总量与根际土壤因子的聚类分析
I、II、III是在欧式距离15~20分类,A、B、C、D是在欧氏距离5~10分类,①和②是在欧氏距离0~5分类;LCB:辽宁边杖子,LCH:辽宁黄台子,NCX:内蒙汐子镇,LCD:辽宁东碾子沟,NCT:内蒙唐家窝铺,HCD:河北大屯乡,HCJ:河北金沟屯,NMY:内蒙杨家营子,NCD:内蒙大明镇,GSL:甘肃兰州,NCW:内蒙文钟镇,JLB:吉林白城,NMN:内蒙牛营子,SDY:山东烟台,NXL:宁夏隆德,JLC:吉林长春
Figure 1. Cluster analyses between Saposhnikovia divaricata total chromone content and rhizosphere soil factors in different regions
I, II and III were divided between Euclidean distance 15–20; A, B, C and D were divided between Euclidean distance 5–10; ① and ② were divided between Euclidean distance 0–5; LCB: Bianzhangzi in Liaoning, LCH: Huangtaizi in Liaoning, NCX: Xizi Town in Inner Mongolia, LCD: Dongnianzigou in Liaoning, NCT: Tangjiawopu in Inner Mongolia, HCD: Datun Town in Hebei, HCJ: Jingoutun in Hebei, NMY: Yangjiayingzi in Inner Mongolia, NCD: Daming Town in Inner Mongolia, GSL: Lanzhou in Gansu, NCW: Wenzhong Town in Inner Mongolia, JLB: Baicheng in Jilin, NMN: Niuyingzi in Inner Mongolia, SDY: Yantai in Shandong, NXL: Longde in Ningxia, JLC: Changchun in Jilin
表 1 防风药材采集地信息
Table 1 Information of collection places of Saposhnikovia divaricata
产地 Region 经度 Longitude 纬度 Latitude 海拔/m Altitude 河北大屯乡 Datun Town in Hebei E117°27′48″ N41°1′5″ 520 河北金沟屯 Jingoutun in Hebei E117°28′31″ N41°1′12″ 560 山东烟台 Yantai in Shandong E121°38′24″ N37°26′41″ 50 宁夏隆德 Longde in Ningxia E106°1′46″ N35°35′1″ 600 吉林长春 Changchun in Jilin E125°27′15″ N43°46′20″ 251 甘肃兰州 Lanzhou in Gansu E103°24′33″ N35°15′43″ 2 424 吉林白城 Baicheng in Jilin E122°45′46″ N45°19′46″ 230 辽宁东碾子沟 Dongnianzigou in Liaoning E119°55′54″ N40°59′17″ 641 辽宁边杖子 Bianzhangzi in Liaoning E119°78′3″ N41°36′4″ 540 辽宁黄台子 Huangtaizi in Liaoning E118°50′44″ N42°6′52″ 650 内蒙大明镇 Daming Town in Inner Mongolia E119°11′59″ N41°35′14″ 550 内蒙唐家窝铺 Tangjiawopu in Inner Mongolia E119°24′5″ N41°34′2″ 611 内蒙汐子镇 Xizi Town in Inner Mongolia E119°17′17″ N41°42′36″ 541 内蒙牛营子 Niuyingzi in Inner Mongolia E118°7′9″ N42°11′47″ 720 内蒙杨家营子 Yangjiayingzi in Inner Mongolia E118°48′44″ N42°9′5″ 620 内蒙文钟镇 Wenzhong Town in Inner Mongolia E118°53′1″ N42°7′18″ 640 表 2 不同产地防风产量及色原酮含量1)
Table 2 Chromone contents and yeilds of Saposhnikovia divaricata from different regions
产地
Regionw /(mg·g−1) 单株产量/g
Yield per plant单株色原酮
总量/mg
Total chromone
content per plant升麻素苷
Prim-O-
glucosylcimifugin升麻素
Cimifugin5−O−甲基维斯
阿米醇苷
5-O-methylvisamminol亥茅酚苷
Sec-O-glucosylhamaudol总色原酮
Total chromoneHCD 4.007±0.15a 0.213±0.01c 4.838±0.27b 0.112±0.01abc 9.170±0.42a 8.869±0.04de 81.329±0.37a HCJ 2.428±0.07d 0.080±0.01gh 2.663±0.13cd 0.139±0.01abc 5.310±0.21d 9.002±0.02d 47.801±0.12c SDY 3.272±0.07c 1.113±0.02a 4.930±0.15ab 0.225±0.02a 9.539±0.24a 6.302±0.13h 60.115±1.25b NXL 0.634±0.02i 0.002±0.01k 0.629±0.02i 0.164±0.03abc 1.430±0.05i 8.667±0.05ef 12.394±0.07l JLC 1.095±0.15g 0.266±0.03b 1.844±0.31e 0.042±0.01c 3.238±0.42fg 7.750±0.12g 25.095±0.40ij GSL 2.042±0.03e 0.195±0.01d 1.096±0.01h 0.199±0.05ab 3.512±0.01ef 9.458±0.08c 33.216±0.29g JLB 2.356±0.21d 0.040±0.01j 5.232±0.48a 0.099±0.01abc 7.724±0.68b 5.777±0.18i 44.622±1.39d LCD 1.405±0.03f 0.084±0.01gh 1.240±0.03gh 0.054±0.01bc 2.783±0.05gh 10.262±0.09b 28.559±0.26h LCB 1.485±0.02f 0.112±0.01f 1.804±0.03e 0.074±0.01bc 3.475±0.05ef 11.025±0.11a 38.312±0.39e LCH 1.477±0.03f 0.082±0.01gh 2.353±0.07d 0.039±0.03c 3.958±0.10e 9.359±0.19c 37.043±0.75ef NCD 1.012±0.04g 0.077±0.01h 1.392±0.04fgh 0.229±0.24a 2.534±0.08h 8.475±0.12f 21.476±0.30k NCT 0.803±0.03h 0.040±0.01j 1.642±0.10ef 0.031±0.01c 2.518±0.14h 9.443±0.12c 23.777±0.30j NCX 1.143±0.01g 0.060±0.01i 2.577±0.02cd 0.081±0.01abc 3.860±0.03e 9.332±0.18c 36.022±0.70f NMN 1.013±0.08g 0.097±0.01fg 1.367±0.23fgh 0.033±0.01c 2.504±0.31h 8.476±0.17f 21.224±0.43k NMY 1.171±0.10g 0.158±0.01e 1.579±0.06efg 0.052±0.01bc 3.025±0.10fgh 8.584±0.37ef 25.967±1.11i NCW 3.682±0.04b 0.189±0.01d 2.801±0.04c 0.083±0.01abc 6.765±0.07c 6.534±0.15h 44.203±0.99d 1)HCD:河北大屯乡,HCJ:河北金沟屯,SDY:山东烟台,NXL:宁夏隆德,JLC:吉林长春,GSL:甘肃兰州,JLB:吉林白城,LCD:辽宁东碾子沟,LCB:辽宁边杖子,LCH:辽宁黄台子,NCD:内蒙大明镇,NCT:内蒙唐家窝铺,NCX:内蒙汐子镇,NMN:内蒙牛营子,NMY:内蒙杨家营子,NCW:内蒙文钟镇;同列数据后的不同小写字母表示不同产地间差异显著(P<0.05,单因素方差分析)
1)HCD: Datun Town in Hebei, HCJ: Jingoutun in Hebei, SDY: Yantai in Shandong, NXL: Longde in Ningxia, JLC: Changchun in Jilin, GSL: Lanzhou in Gansu; JLB: Baicheng in Jilin, LCD: Dongnianzigou in Liaoning, LCB: Bianzhangzi in Liaoning, LCH: Huangtaizi in Liaoning, NCD: Daming Town in Inner Mongolia, NCT: Tangjiawopu in Inner Mongolia, NCX: Xizi Town in Inner Mongolia, NMN: Niuyingzi in Inner Mongolia, NMY: Yangjiayingzi in Inner Mongolia, NCW: Wenzhong Town in Inner Mongolia; Different lowercase letters in the same column indicate significant differences among different regions(P<0.05,one-way ANOVA)表 3 不同产地土壤因子1)
Table 3 Soil factors of different regions
产地
RegionpH 电导率
Conductivityw/% w(TP)/
(g·kg−1)w/(mg·kg−1) 水分 Water OM TN AN AP AK ACa AMg AFe ACu AZn AMn HCD 8.17 90.90 6.01 0.24 0.07 0.93 71.00 19.01 45.84 577.57 87.47 2.15 0.65 1.81 5.14 HCJ 8.23 98.93 6.50 0.23 0.04 1.29 73.60 16.06 68.60 550.68 99.70 2.24 0.55 1.49 4.25 SDY 7.79 74.30 7.75 0.74 0.04 0.27 66.51 2.77 53.94 325.68 83.20 12.74 1.36 2.49 1.90 NXL 8.57 122.30 7.64 1.25 0.11 1.05 115.51 21.68 131.09 1 303.58 128.46 7.24 1.02 0.91 1.45 JLC 8.41 158.60 8.25 2.59 0.10 0.54 113.18 37.13 718.85 586.08 118.72 6.59 0.98 0.93 4.06 GSL 7.46 93.30 12.96 4.09 0.32 1.03 282.35 24.37 118.24 911.68 152.05 31.19 1.19 2.25 2.47 JLB 8.45 112.80 4.54 2.34 0.23 0.38 148.18 17.83 133.60 826.22 104.33 4.68 0.77 0.80 2.16 LCD 8.76 95.30 6.64 1.02 0.09 0.45 37.38 32.68 106.72 758.03 85.13 2.98 1.12 0.67 0.80 LCB 8.60 124.30 7.45 2.48 0.07 0.52 92.18 17.94 126.41 676.61 104.26 3.26 1.44 0.76 1.59 LCH 8.75 123.00 8.51 2.23 0.07 0.53 81.68 47.46 134.13 669.33 97.33 0.97 0.87 0.84 1.19 NCD 8.57 94.10 4.75 2.55 0.01 0.58 224.01 36.92 103.25 673.07 119.63 3.43 1.05 1.90 2.94 NCT 8.81 116.13 6.44 1.52 0.08 0.37 81.68 19.30 101.27 758.03 85.13 2.31 0.97 0.42 0.93 NCX 8.66 136.40 11.49 0.88 0.09 0.74 78.18 28.18 90.53 661.80 100.80 3.59 1.22 2.26 0.59 NMN 8.87 113.10 10.86 1.42 0.05 0.29 103.85 27.69 88.72 966.56 115.80 1.18 1.01 0.38 1.28 NMY 8.86 115.70 4.36 0.44 0.06 0.52 54.85 15.57 82.67 609.47 105.85 1.36 1.24 0.80 1.00 NCW 8.81 122.03 3.71 2.48 0.07 0.54 281.18 39.65 110.46 834.33 103.72 2.13 0.92 0.89 0.67 1)HCD:河北大屯乡,HCJ:河北金沟屯,SDY:山东烟台,NXL:宁夏隆德,JLC:吉林长春,GSL:甘肃兰州,JLB:吉林白城,LCD:辽宁东碾子沟,LCB:辽宁边杖子,LCH:辽宁黄台子,NCD:内蒙大明镇,NCT:内蒙唐家窝铺,NCX:内蒙汐子镇,NMN:内蒙牛营子,NMY:内蒙杨家营子,NCW:内蒙文钟镇;OM:有机质,TN:全氮,TP:全磷,AN:碱解氮,AP:有效磷,AK:有效钾,ACa:有效钙,AMg:有效镁,AFe:有效铁,ACu:有效铜,AZn:有效锌,AMn:有效锰
1)HCD: Datun Town in Hebei, HCJ: Jingoutun in Hebei, SDY: Yantai in Shandong, NXL: Longde in Ningxia, JLC: Changchun in Jilin, GSL: Lanzhou in Gansu, JLB: Baicheng in Jilin, LCD: Dongnianzigou in Liaoning, LCB: Bianzhangzi in Liaoning, LCH: Huangtaizi in Liaoning, NCD: Daming Town in Inner Mongolia, NCT: Tangjiawopu in Inner Mongolia, NCX: Xizi Town in Inner Mongolia, NMN: Niuyingzi in Inner Mongolia, NMY: Yangjiayingzi in Inner Mongolia, NCW: Wenzhong Town in Inner Mongolia; OM: Organic matter, TN: Total nitrogen, TP: Total phosphorus, AN: Alkali-hydrolyzed nitrogen, AP: Available phosphorus, AK: Available potassium, ACa: Available calcium, AMg: Available magnesium, AFe: Available iron, ACu: Available copper; AZn: Available zinc, AMn: Available manganese表 4 防风色原酮含量及产量与土壤因子的相关性分析1)
Table 4 Correlation analyses of chromone contents and yields of Saposhnikovia divaricata with soil factors
因子
FactorX1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Y1 −0.259 −0.641* −0.683** −0.354 −0.028 −0.039 0.161 −0.585* −0.296 −0.512 −0.309 0.188 −0.319 0.526 0.625* Y2 0.072 −0.550* −0.503 −0.211 −0.212 −0.128 −0.306 −0.548* −0.093 −0.562* −0.272 0.320 0.382 0.548* 0.068 Y3 −0.492 −0.326 −0.426 −0.336 −0.043 −0.191 −0.218 −0.565* −0.177 −0.516 −0.509 −0.096 −0.343 0.233 0.408 Y4 0.029 −0.649* −0.450 0.107 0.185 0.207 0.241 −0.735 −0.287 −0.033 0.179 0.533* 0.381 0.341 0.126 Y −0.378 −0.512 −0.575* −0.356 −0.033 −0.136 −0.095 −0.628* −0.227 −0.559* −0.440 0.063 −0.283 0.405 0.694* Z1 0.253 0.264 0.136 0.059 −0.122 −0.105 0.275 0.312 −0.164 0.166 0.029 −0.083 0.207 −0.194 −0.214 Z2 −0.134 −0.494 −0.467 −0.349 −0.031 −0.235 0.153 −0.417 −0.270 −0.598* −0.483 0.020 −0.297 0.479 0.540* 1)X1:水分含量,X2:pH,X3:电导率,X4:有机质含量,X5:全氮含量,X6:碱解氮含量,X7:全磷含量,X8:有效磷含量,X9:有效钾含量,X10:有效钙含量,X11:有效镁含量,X12:有效铁含量,X13:有效铜含量,X14:有效锌含量,X15:有效锰含量;Y1:升麻素苷含量, Y2:升麻素含量, Y3:5−O−甲基维斯阿米醇苷含量,Y4:亥茅酚苷含量,Y:色原酮总量; Z1:单株产量, Z2:单株色原酮总量;“*”表示在0.05水平显著相关,“**”表示在0.01水平显著相关(双尾检测)
1)X1: Moisture content, X2: pH, X3: Conductivity, X4: Organic matter content, X5: Total nitrogen content, X6: Alkali-hydrolyzed nitrogen content, X7: Total phosphorus content, X8: Available phosphorus content, X9: Available potassium content, X10: Available calcium content, X11: Available magnesium content, X12: Available iron content, X13: Available copper content, X14: Available zinc content, X15: Available manganese content; Y1: Prim-O-glucosylcimifugin content, Y2: Cimifugin content, Y3: 5-O-methylvisamminol content, Y4: Sec-O-glucosylhamaudol content, Y: Total chromone content; Z1: Yield per plant,Z2: Total chromone content per plant; “*” indicates significant correlation at 0.05 level, “**” indicates significant correlation at 0.01 level (Double tail detection)表 5 防风色原酮总量与根际土壤因子多重线性回归分析模型及模型偏回归系数1)
Table 5 Models of multiple linear regression analyses between Saposhnikoviadivaricata total chromone content and rhizosphere soil factors and partial regression coefficients of different models
模型 Model R R2 调整R2
Adjusted R2估计的标准误差
Estimated standardized error1 0.604 0.365 0.316 2.077 78 2 0.754 0.568 0.496 1.783 11 3 0.847 0.718 0.641 1.504 74 模型
Model项目
ItemB±SE β t P 1 常量 Constant 7.644±1.335 5.726 0.000 有效磷含量 Available phosphorus content −0.137±0.050 −0.604 −2.732 0.017 2 常量 Constant 5.758±1.394 4.132 0.010 有效磷含量 Available phosphorus content −0.131±0.043 −0.574 −3.018 0.011 有效锰含量 Available manganese content −0.813±0.342 −0.452 2.377 0.035 3 常量 Constant 7.252±1.328 5.460 0.000 有效磷含量 Available phosphorus content −0.132±0.037 −0.579 −3.609 0.004 有效锰含量 Available manganese content −1.206±0.331 −0.671 −3.642 0.004 全磷含量 Total phosphorus content −3.631±1.501 −0.445 −2.419 0.034 1)B:非标准化系数,β:标准化系数
1) B: Unstandardized coefficient,β: Standardized coefficient -
[1] 孙晶波, 杨鹤, 刘岩硕, 等. 防风挥发油与其根际土壤的相关性研究[J]. 中草药, 2013, 44(7): 891-895. [2] 杨利民, 张永刚, 林红梅, 等. 中药材质量形成理论与控制技术研究进展[J]. 吉林农业大学学报, 2012, 34(2): 119-124. [3] 沈晓凤, 张琦, 严铸云, 等. 根际土壤元素有效性与丹参质量的相关性分析[J]. 中国中药杂志, 2016, 41(7): 1212-1217. [4] 王利丽, 张涛, 陈随清, 等. 土壤中无机元素与山茱萸药材质量的相关性分析[J]. 中药材, 2011, 34(8): 1167-1172. [5] 森立之. 神农本草经[M]. 上海: 银联出版社, 1995. [6] 杨景明, 姜华, 孟祥才. 中药防风质量评价的现状与思考[J]. 中药材, 2016, 39(7): 1678-1681. [7] 孙志蓉, 杜永航, 李月, 等. 防风产地及品种变迁的研究[C]//第十届中药鉴定学术会议暨WHO中药材鉴定方法和技术研讨会论文集. 西安: 中华中医药学会, 2010. [8] 国家药典委员会. 中华人民共和国药典一部[S]. 北京: 中国医药科技出版社, 2015: 150. [9] 韩忠明, 王云贺, 李轶雯, 等. 防风色原酮微波辅助提取及含量动态变化研究[J]. 中药材, 2011, 34(3): 465-468. [10] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. [11] 宋正蕊, 陈秀梁, 熊启瑞. 不同产地当归中7种微量元素含量检测分析[J]. 中国检验检测, 2019(2): 39-40. [12] ZHANG H Z, LIU D H, ZHANG D K, et al. Quality assessment of Panax notoginseng from different regions through the analysis of marker chemicals, biological potency and ecological factors[J]. PLoS One, 2016, 11(10): e0164384. doi: 10.1371/journal.pone.0164384
[13] 杨林林, 张涛, 杨利民, 等. 人参叶片中人参皂苷含量、关键酶基因表达和生态因子的相关性分析[J]. 华南农业大学学报, 2018, 39(3): 39-47. doi: 10.7671/j.issn.1001-411X.2018.03.007 [14] 赵钰, 杨林林, 韩梅, 等. 北柴胡不同部位柴胡皂苷含量与其关键酶基因表达量的相关性研究[J]. 中草药, 2019, 50(10): 2433-2441. doi: 10.7501/j.issn.0253-2670.2019.10.026 [15] 杨辉, 贾光林, 刘志英, 等. 不同产地甘草主要有效成分与生态因子的相关性研究[J]. 青岛农业大学学报(自然科学版), 2013, 30(4): 289-294. [16] 薛启, 王康才, 梁永富, 等. 氮锌互作对藿香生长、产量及有效成分的影响[J]. 中国中药杂志, 2018, 43(13): 2654-2663. [17] 尹海波, 张囡, 罗宏, 等. 不同产地牻牛儿苗无机元素的主成分分析和聚类分析[J]. 中国中药杂志, 2010, 35(15): 1935-1938. [18] 张建逵, 康廷国, 窦德强. 林下山参与园参无机元素的聚类分析和主成分分析[J]. 中草药, 2012, 43(9): 1835-1840. [19] 周登远, 王红梅, 崔壮, 等. 临床医学研究中的统计分析和图形表达实例讲解[M]. 北京: 北京科学技术出版社, 2017: 119-125. [20] 周国富, 刘金欣, 李晓娟, 等. 黄芩生态适宜性评价及生态因子对5种主要指标性成分的影响[J]. 中国实验方剂学杂志, 2016, 22(20): 28-32. [21] 卫昊, 郭玲玲, 李柳柳, 等. 不同海拔和光照对黄芩中7种黄酮类有效成分含量的影响[J]. 中草药, 2019, 50(6): 1472-1476. doi: 10.7501/j.issn.0253-2670.2019.06.032 [22] 康传志, 周涛, 江维克, 等. 土壤基本养分及无机元素对栽培太子参药材质量的影响[J]. 中药材, 2015, 38(4): 674-678. [23] 孙晶波, 杨鹤, 李鑫, 等. 根际土壤化学性质对防风色原酮、香豆素含量的影响[J]. 中国实验方剂学杂志, 2013, 19(4): 88-92. -
期刊类型引用(0)
其他类型引用(1)