• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

化学物质对水稻纹枯病菌黑色素形成的影响

江绍锋, 史云静, 赵美, 舒灿伟, 周而勋

江绍锋, 史云静, 赵美, 等. 化学物质对水稻纹枯病菌黑色素形成的影响[J]. 华南农业大学学报, 2020, 41(4): 49-56. DOI: 10.7671/j.issn.1001-411X.201911010
引用本文: 江绍锋, 史云静, 赵美, 等. 化学物质对水稻纹枯病菌黑色素形成的影响[J]. 华南农业大学学报, 2020, 41(4): 49-56. DOI: 10.7671/j.issn.1001-411X.201911010
JIANG Shaofeng, SHI Yunjing, ZHAO Mei, et al. Effects of chemical substances on melanin formation of Rhizoctonia solani AG-1 IA[J]. Journal of South China Agricultural University, 2020, 41(4): 49-56. DOI: 10.7671/j.issn.1001-411X.201911010
Citation: JIANG Shaofeng, SHI Yunjing, ZHAO Mei, et al. Effects of chemical substances on melanin formation of Rhizoctonia solani AG-1 IA[J]. Journal of South China Agricultural University, 2020, 41(4): 49-56. DOI: 10.7671/j.issn.1001-411X.201911010

化学物质对水稻纹枯病菌黑色素形成的影响

基金项目: 国家自然科学基金(31271994,31470247)
详细信息
    作者简介:

    江绍锋(1988—),男,助理研究员,博士,E-mail: jiangshaofeng98@foxmail.com

    通讯作者:

    周而勋(1963—),男,教授,博士,E-mail: exzhou@scau.edu.cn

  • 中图分类号: S435.111.4

Effects of chemical substances on melanin formation of Rhizoctonia solani AG-1 IA

  • 摘要:
    目的 

    水稻纹枯病是由立枯丝核菌Rhizoctonia solaniAG-1 IA融合群引起的真菌病害,本研究旨在明确外界培养条件与水稻纹枯病菌黑色素形成的关系。

    方法 

    采用菌丝生长速率法和紫外分光光度法,测定化学肥料[500 μg/mL K2SO4、NaH2PO4、CO(NH2)2]、金属离子(5 μg/mL CuSO 4、FeSO4、ZnSO4)、抗氧化剂(5 μg/mL槲皮素、桑色素、抗坏血酸)和对照(300 μg/mL莨菪碱、50 μg/mL儿茶酚、水)对水稻纹枯病菌菌丝生长速率、菌核数量、菌核鲜质量和干质量以及黑色素含量的影响。

    结果 

    500 μg/mL K2SO4、NaH2PO4和CO(NH2)2,5 μg/mL CuSO4和ZnSO4,5 μg/mL槲皮素、桑色素和抗坏血酸以及50 μg/mL儿茶酚溶液对水稻纹枯病菌黑色素的形成均有促进作用。其中,500 μg/mL的CO(NH2)2处理下,水稻纹枯病菌产生黑色素最多,为113.2 mg;而300 μg/mL的莨菪碱处理下,水稻纹枯病菌产生黑色素最少,为37.4 mg。

    结论 

    水稻纹枯病菌黑色素的产生与菌丝生长速率和菌核发育没有必然的联系,即抑制菌丝生长和菌核发育的化学物质,不一定能够抑制黑色素的形成。本研究结果可为水稻纹枯病防控机理的研究提供依据。

    Abstract:
    Objective 

    Rice sheath blight, caused by Rhizoctonia solaniAG-1 IA, is an important fungal disease. The purpose of this study was to determine the relationship between external culture conditions and melanin formation of R. solani AG-1 IA.

    Method 

    The effects of four different treatment groups, i. e. chemical fertilizer group [500 μg/mL K2SO4, NaH2PO4, CO(NH2)2], metal ion compound group(5 μg/mL CuSO4, FeSO4, ZnSO4), antioxidant group (5 μg/mL quercetin, morin, vitamin C) and control group (300 μg/mL hyoscyamine, 50 μg/mL catechol, water), on the mycelial growth rate, sclerotia number, sclerotial fresh weight and dry weight as well as melanin content of R. solani AG-1 IA were determined by measuring mycelial growth rate and ultraviolet spectrophotometry.

    Result 

    Chemical fertilizer [500 μg/mL K2SO4, NaH2PO4, CO(NH2)2], metal ion compound (5 μg/mL CuSO4, ZnSO4), antioxidant(5 μg/mL quercetin, morin, vitamin C) and catechol(50 μg/mL) could promote the formation of melanin. Under the treatment of 500 μg/mL CO(NH2)2, the melanin content of R. solani AG-1 IA was the highest (113.2 mg), while under the treatment of 300 μg/mL hyoscyamine, the melanin content of R. solani AG-1 IA was the lowest (37.4 mg).

    Conclusion 

    Melanin formation is not necessarily related to mycelial growth and sclerotial development, i.e. the chemical substances, which have inhibitory effect on mycelial growth and sclerotial development, might have no inhibition on melanin formation. The results of this study provide a basis for understanding the mechanism for prevention and control of rice sheath blight.

  • 图  1   不同化学物质处理的水稻纹枯病菌菌核形态及分布

    Figure  1.   Morphology and distribution of sclerotia of Rhizoctonia solani AG-1 IA treated by different chemicals

    图  2   不同化学物质对水稻纹枯病菌菌核数量的影响

    相同图标的柱子上的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  2.   Effects of different chemicals on sclerotia numbers of Rhizoctonia solaniAG-1 IA

    Different lowercase letters on pillars of the same icon indicate significant differences (P<0.05,Duncan’s test)

    图  3   水稻纹枯病菌黑色素的紫外−可见光吸收光谱

    Figure  3.   Ultraviolet-visible light absorption spectra of the melanin of Rhizoctonia solani AG-1 IA

    表  1   本研究使用的化学物质及浓度

    Table  1   Chemicals and concentrations used in this study

    组别
    Group
    化学物质 Chemical 母液 Stock solution
    组分 Component ρ/(μg·mL−1) 溶剂 Solvent ρ/(mg·mL−1)
    金属离子
    Metal ion compound
    CuSO4 5 ddH2O 50
    ZnSO4 5 ddH2O 50
    FeSO4 5 ddH2O 50
    抗氧化剂
    Antioxidant
    槲皮素 Quercetin 5 无水乙醇 Absolute ethanol 5
    桑色素 Morin 5 无水乙醇 Absolute ethanol 5
    抗坏血酸 Ascorbic acid 5 无水乙醇 Absolute ethanol 5
    化学肥料
    Chemical fertilizer
    CO(NH2)2 500 ddH2O 50
    NaH2PO4 500 ddH2O 50
    K2SO4 500 ddH2O 50
    对照
    Control
    莨菪碱 Hyoscyamine 300 无水乙醇 Absolute ethanol 150
    儿茶酚 Catechol 50 无水乙醇 Absolute ethanol 100
    水 Water
    下载: 导出CSV

    表  2   化学物质对水稻纹枯病菌菌丝生长速率和菌核质量 (m) 的影响1)

    Table  2   Effects of chemicals on mycelial growth rate and sclerotial weight (m) of Rhizoctonia solani AG-1 IA

    组别
    Group
    化学物质
    Chemical
    ρ(化学物质)/(μg·mL−1)
    Chemical content
    d(菌落)/mm
    Colony diameter
    m/g
    Fresh weight
    m/g
    Dry weight
    化学肥料
    Chemical fertilizer
    K2SO4 500 45.66±1.26b 0.487±0.041a 0.154±0.008a
    NaH2PO4 500 40.89±0.87c 0.473±0.008a 0.139±0.004a
    CO(NH2)2 500 53.83±1.20a 0.499±0.027a 0.128±0.015a
    金属离子
    Metal ion compound
    CuSO4 5 50.11±1.57b 0.175±0.003b 0.068±0.002b
    ZnSO4 5 47.52±1.13c 0.152±0.009b 0.057±0.004b
    FeSO4 5 58.13±0.82a 0.212±0.006a 0.081±0.004a
    抗氧化剂
    Antioxidant
    槲皮素 Quercetin 5 43.55±1.19b 0.347±0.021b 0.117±0.006b
    桑色素 Morin 5 37.71±1.28c 0.509±0.021a 0.149±0.003a
    抗坏血酸 Ascorbic acid 5 50.04±0.79a 0.414±0.009b 0.133±0.007b
    对照
    Control
    莨菪碱 Hyoscyamine 300 52.75±0.47a 0.434±0.009a 0.138±0.004a
    儿茶酚 Catechol 50 23.40±0.72c 0.401±0.023a 0.132±0.007a
    水 Water 49.23±0.62b 0.500±0.047a 0.148±0.011a
     1)相同组别、同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column of the same group indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV

    表  3   化学物质对水稻纹枯病菌黑色素产生的影响

    Table  3   Effects of chemicals on the melanin formation of Rhizoctonia solani AG-1 IA

    组别
    Group
    化学物质
    Chemical
    ρ/(μg·mL−1) m(黑色素)/mg
    Melanin mass
    化学肥料
    Chemical fertilizer
    K2SO4 500 65.1
    NaH2PO4 500 85.5
    CO(NH2)2 500 113.2
    金属离子
    Metal ion compound
    CuSO4 5 65.7
    ZnSO4 5 59.5
    FeSO4 5 44.3
    抗氧化剂
    Antioxidant
    槲皮素 Quercetin 5 75.7
    桑色素 Morin 5 91.1
    抗坏血酸 Ascorbic acid 5 69.5
    对照
    Control
    莨菪碱 Hyoscyamine 300 37.4
    儿茶酚 Catechol 50 55.7
    水 Water 0 46.2
    下载: 导出CSV
  • [1]

    ELAD Y. The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiomm) in various crops[J]. Plant Pathol, 1992, 41(4): 417-426. doi: 10.1111/j.1365-3059.1992.tb02436.x

    [2]

    TOWNSEND B B. Nutritional factors influencing the production of sclerotia by certain fungi[J]. Ann Bot, 1957, 21(81): 153-166.

    [3] 曹志艳, 杨胜勇, 董金皋. 植物病原真菌黑色素与致病性关系的研究进展[J]. 微生物学通报, 2006, 33(1): 154-158. doi: 10.3969/j.issn.0253-2654.2006.01.031
    [4]

    REVANKAR S G, SUTTON D A. Melanized fungi in human disease[J]. Clin Microbiol Rev, 2010, 23(4): 884. doi: 10.1128/CMR.00019-10

    [5] 江绍锋, 王陈骄子, 舒灿伟, 等. 水稻纹枯病菌RsCat基因的克隆及其表达分析[J]. 华中农业大学学报, 2018, 37(3): 25-31.
    [6]

    BELOZERSKAYA T A, GESSLER N N, AVER YANOV A A. Melanin pigments of fungi[M]. Berlin: Springer International Publishing, 2015.

    [7]

    MISHRA S, SINGH H B. Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana[J]. Microbiol Res, 2015, 172(64): 16-18.

    [8]

    JIANG S, WANG C, SHU C, et al. Effects of catechol on growth, antioxidant enzyme activities and melanin biosynthesis gene expression of Rhizoctonia solani AG-1 IA[J]. Can J Plant Pathol, 2018, 40(2): 220-228. doi: 10.1080/07060661.2018.1437775

    [9]

    FENG B, WANG X, HAUSER M, et al. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella(Exophiala) dermatitidis[J]. Infect Immun, 2001, 69(3): 1781. doi: 10.1128/IAI.69.3.1781-1794.2001

    [10] 江绍锋, 王陈骄子, 舒灿伟, 等. 水稻纹枯病菌RsPhm基因的克隆及其表达分析[J]. 中国水稻科学, 2018, 32(2): 111-118.
    [11]

    YANG Y Q, YANG M, LI M H, et al. Cloning and functional analysis of an endo-PG-encoding gene Rrspg1 of Rhizoctonia solani, the causal agent of rice sheath blight[J]. Can J Plant Pathol, 2012, 34(3): 436-447. doi: 10.1080/07060661.2012.709884

    [12] 方中达. 植病研究方法[M]. 3版. 北京: 中国农业出版社, 1998: 46.
    [13]

    CHEN J, WANG C, SHU C, et al. Isolation and characterization of a melanin from Rhizoctonia solani, the causal agent of rice sheath blight[J]. Eur J Plant Pathol, 2015, 142(2): 281-290. doi: 10.1007/s10658-015-0612-0

    [14]

    MOROMIZATO Z, MATSUYAMA N, WAKIMOTO S. The effect of amino acids on sclerotium formation of Rhizoctonia solani Kühn (AG-1) I: Inhibition of sclerotial formation by various amino acids[J]. Jap J Plant Pathol, 1980, 46(1): 15-20.

    [15] 沈会芳, 周而勋, 戚佩坤. 化学肥料对水稻纹枯病菌菌丝生长和菌核形成的影响[J]. 华南农业大学学报, 2002, 23(2): 94. doi: 10.3969/j.issn.1001-411X.2002.02.029
    [16] 刘力, 葛起新. 立枯丝核菌融合群对四种微量元素敏感性的研究[J]. 植物病理学报, 1988, 18(3): 175-178.
    [17]

    ENGLANDER C M, CORDEN M E. Stimulation of mycelial growth of Endothia parasitica by heavy metals[J]. Appl Microbiol, 1971, 22(6): 1012-1016. doi: 10.1128/AEM.22.6.1012-1016.1971

    [18] 刘杏忠, 沈崇尧, 裘维蕃. 重金属离子对一些水霉的毒性[J]. 植物病理学报, 1989, 19(3): 173-177. doi: 10.3321/j.issn:0412-0914.1989.03.002
    [19] 沈会芳, 周而勋, 戚佩坤. 金属离子对水稻纹枯病菌菌丝生长和菌核形成的影响[J]. 华南农业大学学报, 2002, 23(1): 38-40. doi: 10.3969/j.issn.1001-411X.2002.01.011
    [20]

    WANG C, PI L, JIANG S, et al. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA[J]. Fungal Biol, 2018, 122(5): 322-332. doi: 10.1016/j.funbio.2018.02.003

    [21]

    GEORGIOU C D, ZEES A. Lipofuscins and sclerotial differentiation in phytopathogenic fungi[J]. Mycopathologia, 2002, 153(4): 203-208. doi: 10.1023/A:1014988419357

    [22]

    GEORGIOU C D. Lipid peroxidation in Sclerotium rolfsii: A new look into the mechanism of sclerotial biogenesis in fungi[J]. Mycol Res, 1997, 101(4): 460-464. doi: 10.1017/S0953756296002882

    [23]

    LU L, SHU C, LIU C, et al. The impacts of natural antioxidants on sclerotial differentiation and development in Rhizoctonia solani AG-1 IA[J]. Eur J Plant Pathol, 2016, 146(4): 729-740. doi: 10.1007/s10658-016-0953-3

    [24] 张传玉, 张执金, 黄荣峰, 等. 水稻品种中VC含量及抗氧化性的比较分析[J]. 中国农业科技导报, 2011, 13(6): 6-11. doi: 10.3969/j.issn.1008-0864.2011.06.02
    [25]

    GEORGIOU C D, ZERVOUDAKIS G, PETROPOULOU K P. Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii[J]. Mycologia, 2003, 95(2): 308-316. doi: 10.1080/15572536.2004.11833115

    [26]

    ABDEL-MOTAAL F F, EL-ZAYAT S A, KOSAKA Y, et al. Antifungal activities of hyoscyamine and scopolamine against two major rice pathogens: Magnaporthe oryzae and Rhizoctonia solani[J]. J Gen Plant Pathol, 2010, 76(2): 102-111. doi: 10.1007/s10327-010-0225-6

图(3)  /  表(3)
计量
  • 文章访问数:  1042
  • HTML全文浏览量:  5
  • PDF下载量:  956
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-07-09

目录

    /

    返回文章
    返回