Screening and identification of an oxytetracycline degradation strain resistant to Cu2+ and Zn2+ and its characteristics
-
摘要:目的
铜、锌离子和土霉素作为养殖业中常用饲料添加剂,在畜禽粪便和污水中大量残留,形成了复合污染。本文在铜、锌离子的胁迫下筛选出降解土霉素的菌株。
方法通过选择培养基,从养殖废水中筛选分离出1株土霉素降解菌DJI,优化其降解条件,测定DJ1菌株对其他四环素类抗生素和氯霉素的耐受性。
结果通过菌株形态学特征及18S rDNA序列比对分析,确定DJ1菌株为Cutaneotrichosporon cutaneum。该菌在pH7、温度30 ℃、装液量50 mL(使用250 mL三角瓶)、底物质量浓度200 mg/L、接种量为1% (φ)的条件下,培养5 d后对土霉素的降解率为78.83%。在低质量浓度(50 mg/L)土霉素的培养基中,添加50 mg/L Zn2+抑制了土霉素的降解;而在高质量浓度(200 mg/L)土霉素培养基中,添加50 mg/L Cu2+抑制了土霉素的降解。菌株DJ1对四环素类抗生素及氯霉素具有高耐受能力,耐受均超过700 mg/L,能在抗生素与重金属铜、锌离子二元交叉培养基平板上生长,具有耐抗生素与重金属的双重抗性。
结论菌株DJI具有高耐受四环素类抗生素、氯霉素、铜和锌离子的能力,能高效降解土霉素,可在环境抗生素污染防治中发挥积极作用。
Abstract:ObjectiveAs the main feed additive in breeding industry, Cu2+, Zn2+ and oxytetracycline contribute to high amounts of residues in livestock and poultry excrement and sewage, forming complex pollution. We are aimed at screening strains to degrade oxytetracycline under the stress of Cu2+ and Zn2+.
MethodThe strain DJ1 of oxytetracycline degrading bacteria was screened and isolated from culture wastewater using selective medium. The biodegrading conditions of oxytetracycline by strain DJ1 were optimized. The tolerances of strain DJ1 to other tetracycline antibiotics and chloramphenicol were determined.
ResultThe strain DJ1 was identified as Cutaneotrichosporon cutaneum based on morphology and 18S rDNA sequence alignment. The oxytetracycline degradation rate of DJ1 reached 78.83% after five days of culturations under the condition of pH7, 30 ℃ temperature, 50 mL liquid in 250 mL flask, 200 mg/L substrate and 1%(φ) inoculum size. In medium with lower concentration (50 mg/L) of oxytetracycline, 50 mg/L Zn2+ inhibited oxytetracycline degradation, while 50 mg/L Cu2+ inhibited oxytetracycline degradation in medium with higher concentration (200 mg/L) of oxytetracycline. DJ1 strain had high tolerance to tetracycline antibiotics and chloramphenicol, the tolerating concentrations to both were above 700 mg/L. DJ1 strain could grow on the plate of binary cross medium with antibiotics and heavy metals of Cu2+ and Zn2+, showing dual resistance to antibiotics and heavy metals.
ConclusionDJ1 strain has high tolerance to tetracycline antibiotics, chloramphenicol, Cu2+ and Zn2+. It can efficiently degrade oxytetracycline and can be used to control antibiotic contamination in the environment.
-
Keywords:
- oxytetracycline /
- degradation rate /
- antibiotic /
- heavy metal /
- tolerance
-
-
-
[1] HVISTENDAHL M. Public health. China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083): 795. doi: 10.1126/science.336.6083.795
[2] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ Sci Technol, 2015, 49(11): 6772-6782. doi: 10.1021/acs.est.5b00729
[3] ZHANG H, LUO Y, ZHOU Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. J Agro-Environ Sci, 2008, 27(2): 407-413.
[4] 邰义萍, 莫测辉, 李彦文, 等. 东莞市蔬菜基地土壤中四环素类抗生素的含量与分布[J]. 中国环境科学, 2011, 31(1): 90-95. [5] KUMMERER K. Antibiotics in the aquatic environment-A review-Part II[J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
[6] 那广水, 陈彤, 张月梅, 等. 中国北方地区水体中四环素族抗生素残留现状分析[J]. 中国环境监测, 2009, 25(6): 78-80. doi: 10.3969/j.issn.1002-6002.2009.06.022 [7] 陈小燕, 牛玉玲, 朱敏, 等. 固相萃取−高效液相色谱法测定牛奶中四环素类抗生素[J]. 中国抗生素杂志, 2017, 42(2): 129-133. doi: 10.3969/j.issn.1001-8689.2017.02.009 [8] 陈智学. 土霉素对酶活性及微生物群落代谢的影响[D]. 杨凌: 西北农林科技大学, 2013. [9] WANG Y, ZHANG H, ZHANG J H, et al. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor[J]. J Hazard Mater, 2011, 192(1): 35-43.
[10] 杨旭, 刘美娇, 林深, 等. 限进材料固相萃取−高效液相色谱在线联用检测牛奶中四环素类抗生素残留[J]. 分析化学, 2016, 44(1): 146-151. [11] CONZUELO F, GAMELLA M, CAMPUZANO S, et al. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk[J]. Anal Chem Acta, 2012, 737(15): 29-36.
[12] 唐礼庆, 何成达, 罗亚红, 等. 四环素类抗生素生产废水处理技术进展[J]. 环境科学与管理, 2006, 31(7): 99-102. doi: 10.3969/j.issn.1673-1212.2006.07.031 [13] 孟应宏, 冯瑶, 黎晓峰, 等. 土霉素降解菌筛选及降解特性研究[J]. 植物营养与肥料学报, 2018, 24(3): 720-727. [14] 翟辉. 土霉素降解菌的筛选、鉴定及其在污染土壤中的修复模拟[D]. 杨凌: 西北农林科技大学, 2016. [15] HÖLZEL C S, SCHWAIGER K, HARMS K, et al. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria[J]. Environ Res, 2010, 110(4): 318-326. doi: 10.1016/j.envres.2010.02.009
[16] 刘爱民. 微生物学实验[M]. 合肥: 安徽人民出版社, 2009: 120-138. [17] ARIKAN O, MULBRY W, INGRAM D, et al. Minimally managed composting of beef manure at the pilot scale: Effect of manure pile construction on pile temperature profiles and on the fate of oxytetracycline and chlortetracycline[J]. Bioresour Technol, 2009, 100(19): 4447-4453. doi: 10.1016/j.biortech.2008.12.063
[18] 赵永斌. 3种四环素类抗生素降解菌的筛选及降解特性的研究[D]. 太谷: 山西农业大学, 2015. [19] LENG Y, BAO J, CHANG G, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. J Hazard Mater, 2016, 318: 125-133. doi: 10.1016/j.jhazmat.2016.06.053
[20] 曾巧云, 丁丹, 檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 2018, 27(9): 194-202. [21] GUO R X, CHEN J Q. Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products[J]. Chemosphere, 2012, 87(11): 1254-1259. doi: 10.1016/j.chemosphere.2012.01.031
[22] SUDA T, HATA T, KAWAI S, et al. Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole[J]. Bioresour Technol, 2012, 103(1): 498-501. doi: 10.1016/j.biortech.2011.10.041
[23] HUANG X, ZHANG X, FENG F, et al. Biodegradation of tetracycline by the yeast strain Trichosporon mycotoxinivorans XPY-10[J]. Prep Biochem Biotechnol, 2016, 46(1): 15-22. doi: 10.1080/10826068.2014.970692
[24] 王志强, 张长青, 王维新. 土霉素降解菌的筛选及其降解特性研究[J]. 中国兽医科学, 2011, 41(5): 536-540. [25] 黄建凤, 张发宝, 逄玉万, 等. 1株四环素降解菌的分离鉴定及降解特性研究[J]. 微生物学杂志, 2017, 37(1): 50-56. doi: 10.3969/j.issn.1005-7021.2017.01.008 [26] QI W, LONG J, FENG C, et al. Fe3+ enhanced degradation of oxytetracycline in water by pseudomonas[J]. Water Res, 2019, 160: 361-370. doi: 10.1016/j.watres.2019.05.058
[27] 于浩, 李晔, 程全国. 土霉素降解菌的筛选及其降解条件优化[J]. 沈阳大学学报(自然科学版), 2017, 29(1): 21-25. [28] WANG J, GAO Q, ZHANG H, et al. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock[J]. Bioresour Technol, 2016, 218: 892-901. doi: 10.1016/j.biortech.2016.06.130