蔗田滴灌施肥土壤甲烷排放通量与活性有机碳含量的关系

    白雪, 农梦玲, 龙鹏宇, 李伏生

    白雪, 农梦玲, 龙鹏宇, 等. 蔗田滴灌施肥土壤甲烷排放通量与活性有机碳含量的关系[J]. 华南农业大学学报, 2020, 41(3): 31-37. DOI: 10.7671/j.issn.1001-411X.201907020
    引用本文: 白雪, 农梦玲, 龙鹏宇, 等. 蔗田滴灌施肥土壤甲烷排放通量与活性有机碳含量的关系[J]. 华南农业大学学报, 2020, 41(3): 31-37. DOI: 10.7671/j.issn.1001-411X.201907020
    BAI Xue, NONG Mengling, LONG Pengyu, et al. Relationship between soil methane emission flux and active organic carbon content in sugarcane field under drip fertigation[J]. Journal of South China Agricultural University, 2020, 41(3): 31-37. DOI: 10.7671/j.issn.1001-411X.201907020
    Citation: BAI Xue, NONG Mengling, LONG Pengyu, et al. Relationship between soil methane emission flux and active organic carbon content in sugarcane field under drip fertigation[J]. Journal of South China Agricultural University, 2020, 41(3): 31-37. DOI: 10.7671/j.issn.1001-411X.201907020

    蔗田滴灌施肥土壤甲烷排放通量与活性有机碳含量的关系

    基金项目: 国家自然科学基金(31760603);广西科技计划“基地和人才专项”(AD17195060)
    详细信息
      作者简介:

      白雪(1994—),女,硕士研究生,E-mail: 2428479916@qq.com

      通讯作者:

      李伏生(1963—),男,教授,博士,E-mail: 19880066@gxu.edu.cn

    • 中图分类号: S158.3;X511

    Relationship between soil methane emission flux and active organic carbon content in sugarcane field under drip fertigation

    • 摘要:
      目的 

      研究蔗田滴灌施肥对土壤活性有机碳含量和甲烷排放通量的影响,探讨蔗田滴灌施肥土壤甲烷排放通量与土壤活性有机碳含量之间的关系。

      方法 

      2018年3—12月在南宁市灌溉试验站开展不同滴灌灌水、施肥的田间试验,试验设4种施肥水平:常规施肥(F100,N 250 kg·hm−2、P2O5 150 kg·hm−2、K2O 200 kg·hm−2)、增量施肥1(F110,在F100基础上增加10%)、增量施肥2(F120,在F100基础上增加20%)和减量施肥(F90,在F100基础上减少10%),以及2种滴灌灌水水平:W180(180 m3·hm−2)和W300(300 m3·hm−2)。用常规法测定不同生育时期蔗田土壤甲烷排放通量和土壤活性有机碳含量,用Pearson法分析土壤甲烷排放通量与土壤活性有机碳含量的关系。

      结果 

      在分蘖期,W300F120处理土壤可溶性有机碳(DOC)含量较W300F100提高了156%,而土壤CH4排放通量较其他处理低。在成熟期,W300F120处理土壤DOC含量较W300F110增加了114%,微生物量碳(MBC)较W300F110增加了49.6%。蔗田土壤CH4排放通量仅与土壤DOC含量呈显著正相关,相关系数为0.38。

      结论 

      土壤DOC含量显著影响蔗田土壤甲烷排放通量。W300F120处理可以提高分蘖期和成熟期蔗田土壤可溶性有机碳含量、减少分蘖期蔗田土壤CH4排放。

      Abstract:
      Objective 

      To study the effects of drip fertigation on soil active organic carbon content and methane (CH4) emission flux in sugarcane field, and investigate the relationship between soil methane emission flux and soil active organic carbon content.

      Method 

      The field experiment with different irrigation and fertilization treatments under drip irrigation was conducted in Nanning Irrigation Experimental Station from March to December in 2018. Four fertilization levels were designed: Conventional fertilization (F100, N 250 kg·hm−2, P2O5 150 kg·hm−2, K2O 200 kg·hm−2), incremental fertilization 1 (F110, 10% increase based on F100), incremental fertilization 2 (F120, 20% increase on the basis of F100), and reducing fertilization (F90, 10% reduction based on F100). Two drip irrigation levels were set: W180 (180 m3·hm−2) and W300 (300 m3·hm−2). Soil CH4 emission flux and active organic carbon contents at different growth stages of sugarcane were measured using conventional method, and the relationships between soil CH4 emission flux and active organic carbon contents in sugarcane field were analyzed by Pearson method.

      Result 

      At tillering stage, W300F120 treatment increased soil soluble organic carbon (DOC) content by 156% compared with W300F100 but had lower CH4 emission flux in soil than the other treatments. At maturing stage, W300F120 treatment increased soil DOC content and microbial biomass carbon (MBC) by 114% and 49.6% compared with W300F100, respectively. CH4 emission flux in sugarcane field was only positively correlated with soil DOC content, with the correlation coefficient of 0.38.

      Conclusion 

      Soil DOC content significantly affects CH4 emission flux in sugarcane field. W300F120 treatment can increase soil soluble organic carbon content in sugarcane field at tillering and maturing stages, and reduce soil CH4 emission in sugarcane field at tillering stage.

    • 图  1   试验期间月均温和月降雨量

      Figure  1.   Monthly average temperature and rainfall during experimental period

      图  2   不同生育期蔗田土壤甲烷排放通量

      SS: 苗期,TS:分蘖期,ES:伸长期,RS:成熟期;相同生育期不同柱子上,凡是有一个相同小写字母者表示差异不显著(P>0.05,Duncan’s法)

      Figure  2.   Soil CH4 emission flux at different growth stages in sugarcane field

      SS:Seedling stage;TS: Tillering stage;ES: Elongating stage;RS: Ripening stage. The same lowercase letters at the same growth stage indicated no significant difference (P>0.05, Duncan’s test)

      表  1   蔗田各生育期灌水量

      Table  1   Irrigation amount at different growth stages in sugarcane field m3·hm−2

      生育期  
      Growth stage  
      灌溉水平 Irrigation level
      W180 W300
      苗期 Seedling stage 60 90
      分蘖期 Tillering stage 30 60
      伸长期 Elongating stage 60 120
      成熟期 Ripening stage 30 30
      合计 Total 180 300
      下载: 导出CSV

      表  2   不同滴灌施肥处理土壤易氧化有机碳含量1)

      Table  2   Content of soil labile organic carbon in different drip fertigation treatments g·kg−1

      滴灌灌水水平
      Drip irrigation level
      施肥水平
      Fertilization level
      苗期
      Seedling stage
      分蘖期
      Tillering stage
      伸长期
      Elongating stage
      成熟期
      Ripening stage
      W180 F100 1.59±0.16a 1.51±0.16bcd 1.25±0.16d 1.23±0.08d
      F110 1.51±0.34a 1.94±0.01a 1.23±0.12d 1.45±0.03b
      F120 1.56±0.07a 1.74±0.07ab 1.60±0.15ab 1.67±0.08a
      F90 1.52±0.30a 1.59±0.14bcd 1.74±0.11a 1.47±0.06b
      W300 F100 1.23±0.30a 1.29±0.04d 1.31±0.14cd 1.32±0.06cd
      F110 1.38±0.37a 1.40±0.07cd 1.54±0.18abc 1.38±0.05bc
      F120 1.20±0.12a 1.64±0.10bc 1.36±0.06bcd 1.43±0.10bc
      F90 1.61±0.16a 1.43±0.01cd 1.25±0.18d 1.70±0.06a
       1) 表中数据为平均值±标准误,同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
       1) The values in the table are mean ± standard error, and different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test)
      下载: 导出CSV

      表  3   不同滴灌施肥处理的土壤微生物量碳含量1)

      Table  3   Content of soil microbial biomass carbon in different drip fertigation treatments g·kg−1

      滴灌灌水水平
      Drip irrigation level
      施肥水平
      Fertilization level
      苗期
      Seedling stage
      分蘖期
      Tillering stage
      伸长期
      Elongating stage
      成熟期
      Ripening stage
      W180 F100 1.32±0.14b 0.66±0.31a 0.16±0.03c 1.40±0.21bc
      F110 1.31±0.19b 0.67±0.25a 0.64±0.09a 1.02±0.11c
      F120 1.27±0.16b 0.41±0.23a 0.65±0.03a 1.46±0.14abc
      F90 1.26±0.38b 0.54±0.16a 0.25±0.08bc 1.87±0.04a
      W300 F100 1.82±0.03a 0.64±0.16a 0.38±0.05b 1.30±0.20bc
      F110 1.40±0.29ab 0.63±0.08a 0.81±0.09a 1.15±0.11c
      F120 1.31±0.34b 0.25±0.19a 0.41±0.05b 1.72±0.11ab
      F90 1.67±0.05ab 0.31±0.29a 0.67±0.09a 1.71±0.10ab
       1) 表中数据为平均值±标准误,同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
       1) The values in the table are mean ± standard error, and different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test)
      下载: 导出CSV

      表  4   不同滴灌施肥处理的土壤可溶性有机碳含量1)

      Table  4   Content of soil dissolved organic carbon in different drip fertigation treatments g·kg−1

      滴灌灌水水平
      Drip irrigation level
      施肥水平
      Fertilization level
      苗期
      Seedling stage
      分蘖期
      Tillering stage
      伸长期
      Elongating stage
      成熟期
      Ripening stage
      W180 F100 0.12±0.06a 0.29±0.11cd 0.14±0.06b 0.12±0.02c
      F110 0.28±0.10a 0.43±0.03abcd 0.15±0.07b 0.23±0.03bc
      F120 0.31±0.15a 0.50±0.05abc 0.15±0.05b 0.30±0.14abc
      F90 0.13±0.05a 0.41±0.12bcd 0.30±0.06a 0.34±0.14ab
      W300 F100 0.10±0.08a 0.25±0.15d 0.15±0.09b 0.21±0.09bc
      F110 0.28±0.13a 0.57±0.20ab 0.23±0.12ab 0.23±0.12bc
      F120 0.26±0.10a 0.64±0.13a 0.18±0.05ab 0.45±0.18a
      F90 0.24±0.17a 0.21±0.07d 0.16±0.08ab 0.51±0.08a
       1) 表中数据为平均值±标准误,同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
       1) The values in the table are mean ± standard error, and different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test)
      下载: 导出CSV
    • [1] 罗梅, 田冬, 高明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 2018, 39(9): 4327-4337.
      [2]

      SAVIOZZI A, LEVI-MINZI R, CARDELLI R, et al. A comparison of soil quality in adjacent cultivated, forest and native grassland soils[J]. Plant Soil, 2001, 233(2): 251-259. doi: 10.1023/A:1010526209076

      [3] 沈宏, 曹志洪, 胡正义. 土壤活性碳的表征及其生态意义[J]. 生态学杂志, 1999, 18(3): 32-38. doi: 10.3321/j.issn:1000-4890.1999.03.008
      [4]

      LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant Soil, 1993, 155/156(1): 399-402. doi: 10.1007/BF00025067

      [5] 张哲, 王邵军, 李霁航, 等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17): 6257-6263.
      [6]

      PURI G, ASHMAN M R. Relationship between soil microbial biomass and gross N mineralisation[J]. Soil Biol Biochem, 1998, 30(2): 251-256. doi: 10.1016/S0038-0717(97)00117-X

      [7] 王瑞. 秸秆添加对土壤温室气体排放和溶解性有机碳DOC组分的影响[D]. 武汉: 华中农业大学, 2018.
      [8] 刘霞娇, 段亚峰, 叶莹莹, 等. 耕作扰动对喀斯特土壤可溶性有机质及其组分迁移淋失的影响[J]. 生态学报, 2018, 38(19): 6981-6991.
      [9] 汪景宽, 李丛, 于树, 等. 不同肥力棕壤溶解性有机碳、氮生物降解特性[J]. 生态学报, 2008, 28(12): 6165-6171. doi: 10.3321/j.issn:1000-0933.2008.12.046
      [10] 寇永珍. 草海高原湿地湖滨带甲烷产生与氧化潜力研究[D]. 贵阳: 贵州师范大学, 2015.
      [11]

      SMITH P, FANG C M. Carbon cycle:A warm response by soils[J]. Nature, 2010, 464(7288): 499-500.

      [12] 倪进治, 徐建民, 谢正苗. 有机肥料施用后潮土中活性有机质组分的动态变化[J]. 农业环境科学学报, 2003, 22(4): 416-419. doi: 10.3321/j.issn:1672-2043.2003.04.008
      [13]

      YAGI K, MINAMI K. Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Sci Plant Nutr, 1990, 36(4): 599-610.

      [14]

      BLAGODATSKAYA E, YUYUKINA T, BLAGODATSKY S, et al. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects[J]. Soil Biol Biochem, 2011, 43(4): 778-786. doi: 10.1016/j.soilbio.2010.12.011

      [15] 王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581
      [16]

      WIESMEIER M, HÜBNER R, SPÖRLEIN P, et al. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation[J]. Glob Change Biol, 2014, 20(2): 653-665. doi: 10.1111/gcb.12384

      [17] 魏长宾, 刘胜辉, 何应对, 等. 甘蔗滴灌施肥效果研究初报[J]. 广东农业科学, 2008, 35(7): 60-61. doi: 10.3969/j.issn.1004-874X.2008.07.023
      [18] 齐玉春, 郭树芳, 董云社, 等. 灌溉对农田温室效应贡献及土壤碳储量影响研究进展[J]. 中国农业科学, 2014, 47(9): 1764-1773. doi: 10.3864/j.issn.0578-1752.2014.09.011
      [19]

      SINGH A, GULATI I J, CHOPRA R, et al. Effect of drip-fertigation with organic manures on soil properties and tomato (Lycopersicon esculentum Mill.) yield under arid condition[J]. Ann Biol, 2014, 30(2): 345-359.

      [20] 刘岳燕. 水分条件与水稻土壤微生物生物量、活性及多样性的关系研究[D]. 杭州: 浙江大学, 2009.
      [21] 俞慎, 李振高. 薰蒸提取法测定土壤微生物量研究进展[J]. 土壤学进展, 1994, 22(6): 42-50.
      [22] 王莹, 阮宏华, 黄亮亮, 等. 围湖造田不同土地利用方式土壤有机碳和易氧化碳[J]. 生态环境学报, 2010, 19(4): 913-918. doi: 10.3969/j.issn.1674-5906.2010.04.031
      [23] 刘涛泽, 刘丛强, 张伟, 等. 喀斯特地区坡地土壤可溶性有机碳的分布特征[J]. 中国环境科学, 2009, 29(3): 248-253. doi: 10.3321/j.issn:1000-6923.2009.03.005
      [24] 董艳芳, 黄景, 李伏生, 等. 不同灌溉模式和施氮处理下稻田CH4和N2O排放[J]. 植物营养与肥料学报, 2017, 23(3): 578-588. doi: 10.11674/zwyf.16437
      [25] 汤桂容, 周旋, 田昌, 等. 有机无机氮肥配施对菜地土壤二氧化碳和甲烷排放的影响[J]. 中国土壤与肥料, 2019(3): 29-35.
      [26] 李玉娥, 林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618. doi: 10.3321/j.issn:1001-8166.1999.06.015
      [27] 道力格亚. 长期不同施肥处理下旱地CO2和CH4排放特征的研究[D]. 杨凌: 西北农林科技大学, 2018.
      [28] 石生伟, 李玉娥, 刘运通, 等. 中国稻田CH4和N2O排放及减排整合分析[J]. 中国农业科学, 2010, 43(14): 2923-2936. doi: 10.3864/j.issn.0578-1752.2010.14.011
      [29] 焦燕, 黄耀, 宗良纲, 等. 氮肥水平对不同土壤CH4排放的影响[J]. 环境科学, 2005, 26(3): 21-24. doi: 10.3321/j.issn:0250-3301.2005.03.005
      [30]

      BODELIER P L E, HAHN A P, ARTH I R, et al. Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice[J]. Biogeochemistry, 2000, 51(3): 225-257. doi: 10.1023/A:1006438802362

      [31] 吴家梅, 纪雄辉, 霍莲杰, 等. 稻田土壤氧化态有机碳组分变化及其与甲烷排放的关联性[J]. 生态学报, 2013, 33(15): 4599-4607.
      [32]

      MASTO R E, CHHONKAR P K, SINGH D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J]. Soil Biol Biochem, 2006, 38(7): 1577-1582. doi: 10.1016/j.soilbio.2005.11.012

      [33] 杨文元, 董博, 赵记军, 等. 追施不同量尿素下麦后复种油菜对耕层土壤有机碳及微生物量碳氮的影响[J]. 水土保持通报, 2017, 37(3): 59-62.
      [34] 李睿. DOM对紫色土中养分有效性的影响[D]. 重庆: 西南农业大学, 2005.
      [35] 孙冬晔. 施肥措施对红壤性水稻土可溶性有机碳组成及生物有效性的影响[D]. 南京: 南京农业大学, 2014.
      [36] 莫永亮, 胡荣桂, 赵劲松, 等. 冬水田转稻麦轮作对小麦生长季温室气体排放的影响[J]. 环境科学学报, 2014, 34(10): 2675-2683.
    • 期刊类型引用(4)

      1. 周文灵,陈迪文,吴启华,方界群,敖俊华. 耕作措施对宿根甘蔗产量、碳排放及经济效益的影响. 中国生态农业学报(中英文). 2024(09): 1481-1491 . 百度学术
      2. 王林林,徐珂,李正鹏,严清彪,胡发龙,尚琰隽,韩梅. 不同类型绿肥混播对土壤真菌群落结构和理化性质的影响. 江苏农业学报. 2024(12): 2273-2282 . 百度学术
      3. 郑志杰,刘仁燕,陈宁,熊兴军,余辉亮,鄢紫薇,徐晗,胡荣桂,林杉. 三峡库区2种土地利用方式下土壤盐基离子及碳氮含量对氮添加的响应. 水土保持学报. 2023(01): 197-203 . 百度学术
      4. 赵月琴,马秀静,赵琬婧,张治军,孙晓新. 三江平原垦殖湿地恢复对温室气体排放的影响. 应用生态学报. 2023(08): 2142-2152 . 百度学术

      其他类型引用(10)

    图(2)  /  表(4)
    计量
    • 文章访问数:  19127
    • HTML全文浏览量:  15
    • PDF下载量:  38328
    • 被引次数: 14
    出版历程
    • 收稿日期:  2019-07-13
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2020-05-09

    目录

      /

      返回文章
      返回