Evolution and development of five generations of rice
-
摘要:
近百年来,随着现代稻作农业的发展,水稻Oryza sativa L.品种不断地更新换代。根据水稻品种的遗传基础、特征特性及演变规律,本文把水稻品种分为5个世代(G)。第1代(1G)为高秆水稻,第2代(2G)为半矮秆水稻,第3代(3G)为亚种内杂交水稻,第4代(4G)为亚种间渗入水稻,第5代(5G)为亚种间杂交水稻。在5代水稻中,1G高秆水稻在20世纪60年代后被半矮秆水稻替代,之后基本没有大面积种植。2G半矮秆水稻、3G亚种内杂交水稻和4G亚种间渗入水稻从推广应用至今仍然在使用。5G亚种间杂交水稻即将面世。每一代水稻的出现,都是水稻品种的一次重大创新,都带来水稻育种和生产的变革。认识水稻世代的演变规律,对于把握水稻的发展方向具有重要意义。
Abstract:In recent one hundred years, rice (Oryza sativa L.) varieties have undergone constant upgrading with the development of modern rice farming. According to the genetic basis, characteristics and evolution of rice varieties, this paper divides rice varieties into five generations (G). The first generation (1G) is tall rice, the second generation (2G) is semi-dwarf rice, the third generation (3G) is intra-subspecific hybrid rice, the fourth generation (4G) is inter-subspecific introgression rice, and the fifth generation (5G) is inter-subspecific hybrid rice. In five generations of rice, 1G of tall rice was replaced by semi-dwarf rice after the 1960s, and no more popularly planted afterwards. 2G of semi-dwarf rice, 3G of intra-subspecific hybrid rice, and 4G of inter-subspecific introgression rice are still being used today. 5G of inter-subspecific hybrid rice is coming to be applied. The emergence of each generation of rice is a major innovation in varieties, and has brought about changes in rice breeding and production. Understanding the evolution of rice generations is helpful to grasp rice development direction.
-
Keywords:
- rice /
- breed /
- variety /
- generation /
- evolution /
- agriculture
-
-
表 1 五代水稻的划分
Table 1 The division of five generations of rice
世代
Generation名称
Name品种类型
Type of varieties遗传基础
Genetic basis特征特性
Characteristic1G 高秆水稻
Tall rice传统籼稻
Conventional indica inbred rice传统亚种基因型
Homozygous genotype of conventional subspecies高秆
Tall stalk传统粳稻
Conventional japonica inbred rice2G 半矮秆水稻
Semi-dwarf rice现代常规籼稻
Modern indica inbred rice现代亚种基因型
Homozygous genotype of modern subspecies半矮秆
Semi-dwarf stalk现代常规粳稻
Modern japonica inbred rice3G 亚种内杂交水稻
Intra-subspecific hybrid rice籼型杂交水稻
Indica hybrid rice亚种内杂合基因型
Heterozygous genotype of intra-subspecies亚种内杂种优势
Heterosis of intra-subspecies粳型杂交水稻
Japonica hybrid rice4G 亚种间渗入水稻
Inter-subspecific introgression rice渗粳常规籼稻
Japonica-introgressive indica inbred rice亚种间基因渗入
Gene introgression of inter-subspecies粗秆大穗
Thick stalk and large panicle渗籼常规粳稻
Indica-introgressive japonica inbred rice渗粳杂交籼稻
Japonica-introgressive indica hybrid rice渗籼杂交粳稻
Indica-introgressive japonica hybrid rice5G 亚种间杂交水稻
Inter-subspecific hybrid rice籼粳亚种间杂交水稻
Hybrid rice of indica/japonica亚种间杂合基因型
Heterozygous genotype of indica/japonica亚种间杂种优势
Heterosis of inter-subspecies -
[1] 廖国良. 稻作之源江西万年仙人洞与吊桶环遗址[J]. 世界遗产, 2015(5): 110-115. [2] 丁颖. 广东野生稻及由野生稻育成之新种[J]. 中华农学会报, 1933, 114: 204-217. [3] 谢治平. 南特号的改进与栽培方法[J]. 农业科学通讯, 1955(7): 401-402. [4] 唐凌. 高产农作物促进民族经济融合中相关因素分析: 以容县华侨引进矮仔占水稻为例[J]. 八桂侨刊, 2008(2): 11-16. [5] 广东省农业科学院. 广东省水稻矮化育种工作初步总结[J]. 作物学报, 1966, 5(1): 33-40. [6] 黄耀祥. 水稻杂交育种“组群筛选法”之研究[J]. 广东农业科学, 1980(1): 5-13. [7] 黄耀祥, 陈顺佳, 陈金灿, 等. 水稻丛化育种[J]. 广东农业科学, 1983(1): 1-6. [8] 胡群贤. 矮脚南特亩产千斤的经验与体会[J]. 湖北农业科学, 1965(6): 24-29. [9] PENG S, KHUSH G S, CASSMAN K G. Evolution of the new plant ideotype for increased yield potential[C]//Breaking the yield barrier: Proceedings of a workshop on rice yield potential in favorable environments. Manila: International rice research institute, 1994: 5-20.
[10] 袁隆平. 水稻的雄性不孕性[J]. 科学通报, 1966, 17(4): 185-188. [11] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018(3): 1-7. [12] 石明松. 晚粳自然两用系选育及应用初报[J]. 湖北农业科学, 1981(7): 1-3. [13] SHINJYO C. Genetical studies of cytoplasmic male sterility and fertility restoration in rice, Oryza sativa L.[J]. Sci Bull Coll Agr Univ Ryukyus, 1975, 22: 1-57.
[14] 李铮友. 滇型杂交水稻[M]. 昆明: 云南人民出版社, 1980. [15] IKEHASHI H, ARAKI H. Genetics of F1 sterility in remote crosses in rice[C]//Rice genetics: Proceedings of the first rice genetics symposium. Manila: International rice research institute, 1986: 119-130.
[16] PENG S, KHUSH G S, VIRK P, et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Res, 2008, 108(1): 32-38. doi: 10.1016/j.fcr.2008.04.001
[17] 陈温福, 徐正进, 张龙步, 等. 北方粳型稻超高产育种理论与实践[J]. 中国农业科学, 2007, 40(5): 869-874. doi: 10.3321/j.issn:0578-1752.2007.05.001 [18] TANG L, XU Z, CHEN W, et al. Advances and prospects of super rice breeding in China[J]. J Integr Agric, 2017, 16(5): 984-991.
[19] 杨守仁, 张龙步, 沈钖英, 等. 三十六年来籼粳稻杂交育种的研究及发展[J]. 沈阳农业大学学报, 1987, 18(3): 3-9. [20] 杨振玉, 李志彬, 东丽, 等. 中国杂交粳稻发展与展望[J]. 科学通报, 2016, 61(35): 3770-3777. [21] 邓启云. 广适性水稻光温敏不育系Y58S的选育[J]. 杂交水稻, 2005, 20(2): 15-18. doi: 10.3969/j.issn.1005-3956.2005.02.005 [22] 马荣荣, 王晓燕, 陆永法, 等. 甬优系列杂交水稻新组合的选育和推广[J]. 宁波农业科技, 2005(4): 4-7. [23] 马荣荣, 王晓燕, 陆永法, 等. 2006—2010年甬优系列杂交水稻育种进展[J]. 宁波农业科技, 2010(4): 13-14. [24] 张桂权, 卢永根. 栽培稻(Oryza sativa)杂种不育性的遗传研究Ⅰ: 等基因F1不育系杂种不育性的双列分析[J]. 中国水稻科学, 1989, 3(3): 97-101. doi: 10.3321/j.issn:1001-7216.1989.03.001 [25] 张桂权, 卢永根. 栽培稻杂种不育性的遗传研究Ⅱ: F1花粉不育性的基因模式[J]. 遗传学报, 1993, 20(3): 222-228. [26] 张桂权, 卢永根, 刘桂富, 等. 栽培稻杂种不育性的遗传研究 Ⅲ: 不同类型品种F1花粉不育性的等位基因分化[J]. 遗传学报, 1993, 20(6): 541-551. [27] 张桂权, 卢永根, 张华, 等. 栽培稻(Oryza sativa)杂种不育性的遗传研究Ⅳ: F1花粉不育性的基因型[J]. 遗传学报, 1994, 21(1): 31-41. [28] ZHANG G, LU Y. Genetics of F1 pollen sterility in Oryza sativa[C]. In Rice genetics III. Manila: International rice research institute, 1996: 418-422.
[29] 庄楚雄, 张桂权, 梅曼彤, 等. 栽培稻F1花粉不育基因座S-a的分子定位[J]. 遗传学报, 1999, 26(3): 213-218. [30] 张泽民, 张桂权. 水稻S-c座位的PCR标记精细定位及分子标记辅助选择[J]. 作物学报, 2001, 27(6): 704-709. doi: 10.3321/j.issn:0496-3490.2001.06.004 [31] LI W T, ZENG R Z, ZHANG Z M, et al. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers[J]. Acta Bot Sin, 2002, 44(4): 463-467.
[32] ZHUANG C X, FU Y, ZHANG G Q, et al. Molecular mapping of S-c, an F1 pollen sterility gene in cultivated rice[J]. Euphytica, 2002, 127(1): 133-138. doi: 10.1023/A:1019973110467
[33] SU J, LIU Y. Fine mapping and cloning of the gene S-a for F1 pollen sterility in cultivated rice (Oryza sativa L.)[J]. Mol Plant Breed, 2003, 1(5/6): 757-758.
[34] YANG C Y, CHEN Z Z, ZHUANG C X, et al. Genetic and physical fine-mapping of the Sc locus conferring indica-japonica hybrid sterility in rice (Oryza sativa L.)[J]. Chin Sci Bull, 2004, 49(16): 1718-1721.
[35] LI W, ZENG R, ZHANG Z, et al. Fine mapping of locus S-b for F1 pollen sterility in rice (Oryza sativa L.)[J]. Chin Sci Bull, 2006, 51(6): 675-680. doi: 10.1007/s11434-006-0675-6
[36] LI W, ZENG R, ZHANG Z, et al. Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F1 hybrids in rice (Oryza sativa L.)[J]. Theor Appl Genet, 2008, 116(8): 915-922.
[37] 朱文银, 李文涛, 丁效华, 等. 水稻F1花粉不育基因S-e的初步定位[J]. 华南农业大学学报, 2008, 29(1): 1-5. doi: 10.3969/j.issn.1672-0202.2008.01.001 [38] LONG Y, ZHAO L, NIU B, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes[J]. Proc Natl Acad Sci USA, 2008, 105(48): 18871-18876. doi: 10.1073/pnas.0810108105
[39] SHEN R, WANG L, LIU X, et al. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice[J]. Nat Commun, 2017, 8. doi: 10.38/s41467-017-01400-y
[40] 张桂权, 卢永根. 粳型亲籼系的选育及其在杂交水稻超高产育种上的利用[J]. 杂交水稻, 1999, 14(6): 3-5. [41] GUO J, XU X, LI W, et al. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines[J]. Sci Rep, 2016, 6. doi: 10.1038/srep26878
[42] ZHANG G. Inter-subspecific hybrid rice: Progress and prospect[C]//中国粳稻发展战略暨超级稻二十周年研讨会论文集. 沈阳, 2016: 77-83.