• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

转基因和基因编辑猪的研究进展

李国玲, 徐志谦, 杨化强, 吴珍芳

李国玲, 徐志谦, 杨化强, 等. 转基因和基因编辑猪的研究进展[J]. 华南农业大学学报, 2019, 40(5): 91-101. DOI: 10.7671/j.issn.1001-411X.201905063
引用本文: 李国玲, 徐志谦, 杨化强, 等. 转基因和基因编辑猪的研究进展[J]. 华南农业大学学报, 2019, 40(5): 91-101. DOI: 10.7671/j.issn.1001-411X.201905063
LI Guoling, XU Zhiqian, YANG Huaqiang, et al. Advances on transgenic and gene-edited pigs[J]. Journal of South China Agricultural University, 2019, 40(5): 91-101. DOI: 10.7671/j.issn.1001-411X.201905063
Citation: LI Guoling, XU Zhiqian, YANG Huaqiang, et al. Advances on transgenic and gene-edited pigs[J]. Journal of South China Agricultural University, 2019, 40(5): 91-101. DOI: 10.7671/j.issn.1001-411X.201905063

转基因和基因编辑猪的研究进展

基金项目: 国家转基因重大专项(2016ZX08006002)
详细信息
    作者简介:

    李国玲(1991—),男,博士研究生,E-mail: 792268184@qq.com

    通讯作者:

    吴珍芳(1970—),男,教授,博士,E-mail: wzfemail@163.com

  • 中图分类号: S828

Advances on transgenic and gene-edited pigs

  • 摘要:

    猪是重要的农业经济动物,其在遗传背景、解剖学、生理病理学、营养代谢和疾病特征等方面与人类高度相似,是农业生产性状改良、人类疾病动物模型和异种器官移植研究的重要对象。随着ZFN、TALEN和CRISPR等基因编辑技术的出现,转基因或基因编辑猪的研究取得快速发展。本文将结合当前我国转基因及基因编辑猪的研究现状,对基因编辑技术在农业生产性状改良如提高产肉量、改善肉质、提高抗病能力和建立人类疾病模型、动物生物反应器、异种器官移植等方面进行综述,以期为猪遗传改良和医学研究提供参考。

    Abstract:

    Pigs are important agricultural animals and highly similar to humans in terms of genetic background, anatomy, physiological pathology, nutrient metabolism and disease characteristics. Pigs are intensively studied for the improvement of production traits, establishment of animal models for human diseases and xenotransplantation. With the emergence of gene editing technologies, such as ZFN, TALEN and CRISPR, the research on transgenic or gene-edited pigs has achieved a rapid development. This review summarizes the current research advance of transgenic and gene-edited pigs in China. We also review the applications of gene editing technology in agricultural area, such as increasing meat production, improving meat quality, and resisting disease, as well as in biomedical study such as establishing human disease models, animal bioreactors and xenotransplantation for references of pig genetic improvement and medical research.

  • 近年来,在我国经济迅速发展的过程中,矿山开采和工业废物等带来的土壤和环境重金属污染日益严重,对农业生产和人们的身体健康构成严重威胁。其中,重金属Cd是毒性很强的环境污染物,通过空气沉降、灌溉和施肥等途径进入土壤,引起土壤污染。土壤中高含量Cd对植物的毒性主要表现为植物褪绿、坏疽、落叶、生长量减少、根伸长受阻等[1]。Cd污染农业环境后会不同程度地影响水稻生长及籽粒Cd含量,由此对以稻米为食的人们的生活与健康造成严重危害,如20世纪60年代日本稻田Cd污染导致的骨痛病。水稻在各个生长阶段都会受到土壤中Cd的胁迫,正常的生长发育受到严重影响。水稻种子萌发过程中,Cd对种子发芽率影响较小,但会显著抑制胚根及胚芽的生长,对胚根的抑制作用明显大于胚芽[2-4]。水稻幼苗期遭受Cd胁迫后,根系生长受到抑制,苗高和根长增长减慢[5]。水稻籽粒Cd积累在不同品种间存在显著差异,研究发现了控制籽粒Cd积累的主效基因[6-7]。籽粒低Cd积累是水稻耐Cd研究的重点,从水稻育种和生产需要来看,各个生育时期均耐Cd的材料是最理想的材料。因此,前期耐Cd性与籽粒低Cd积累的相关性研究有助于早期筛选籽粒低Cd积累的材料。程旺大等[8]利用苗期耐Cd性和籽粒Cd含量差异明显的4个晚粳稻品种研究了Cd胁迫对水稻生长和营养代谢的影响,发现Cd胁迫下各品种的产量、每株穗数、每穗粒数、结实率、粒质量及地上部干物质质量等显著降低,苗期耐Cd性强的品种受到的抑制作用小于耐Cd性弱的品种,耐性相近的品种中,籽粒Cd富集程度较高的品种也严重受害。该研究预示可以探索用苗期耐Cd性评价不同品种籽粒Cd含量的差异。

    水稻耐Cd性是多基因控制的数量性状,在耐Cd种质资源筛选、QTL定位、耐Cd基因克隆与功能等研究方面已取得一定进展[6-7, 9-21],上述研究有助于解析水稻耐Cd性的遗传控制基因及作用机理,为育种改良水稻耐Cd性提供重要的指导依据。野生稻是栽培稻的祖先,在长期自然进化过程中适应了多种自然环境,积累了较强的抗逆性,是天然的基因库[22]。但是目前野生稻耐Cd性研究的报道还较少。广东省植物分子育种重点实验室前期构建了以展颖野生稻Oryza glumaepatula为供体的染色体单片段代换系(Single-segment substitution lines, SSSLs)文库[23],本研究对部分SSSLs在芽期进行了不同浓度CdCl2溶液的胁迫处理,对发芽第7天的种子根长及芽长进行分析,以相对根长与相对芽长为指标,筛选出多份芽期耐Cd性强的SSSLs,并根据代换片段的信息,进行初步的QTL鉴定分析。本研究有助于扩大水稻耐Cd资源的范围,获得新的优异基因,为水稻耐Cd育种提供参考。

    栽培稻品种‘华粳籼74’、‘新黄占’、‘中花11’、‘台中65’、‘粤晶丝苗2号’和‘象牙香占’用于确定芽期耐Cd试验中Cd溶液处理浓度与培养条件及Cd耐性分析指标。以‘华粳籼74’为受体、展颖野生稻IRGC104387为供体构建的SSSLs材料共37份。

    挑选颖壳光亮、大小均匀、无斑点、饱满无损伤的水稻种子,用蒸馏水洗涤1遍后用70%(φ)乙醇溶液浸泡20 s,倒去乙醇溶液,用蒸馏水洗去残留的乙醇溶液,重复3次,用培养皿法进行发芽试验。栽培稻品种试验中,CdCl2浓度设为0(对照,只加蒸馏水)、30、50、100和500 μmol·L−1。根据栽培稻品种的浓度梯度的试验结果,将野生稻SSSLs CdCl2处理浓度设为0(对照,只加蒸馏水)、50、100 μmol·L−1。每个培养皿放置20~30粒种子,1个培养皿为1次重复,每份材料每个浓度重复3次。浸种时,在各培养皿中加入相同体积蒸馏水或CdCl2溶液以淹没种子,放在(25±1) ℃的光照培养箱中培养,每日观察,待露白后,将露白的种子转移到垫有2层无菌滤纸的培养皿中。每天补充处理溶液,保持滤纸湿润。每日光照/黑暗时间设为16/8 h,光照强度为5 000 lx。

    以胚芽达到种子长度一半作为发芽的标准。于发芽后第7天统计发芽率,并用直尺测量已发芽种子的根长与芽长。测量根长时,测量最长根长。每份材料每个浓度测30棵幼苗。统计分析不同材料在不同CdCl2浓度处理下的根长、芽长,并计算根芽比、相对根长及相对芽长,以反映其耐Cd特性。

    $$ {\text{根芽比}}={\text{根长}}/{\text{芽长}}{\text{,}} $$
    $$\begin{aligned} {\text{相对根长}}= & {\text{不同}}{{\rm{CdCl}}_2}{\text{浓度处理的根长}}/{\text{对应材料}}\\ & {\text{在对照条件下的根长}}{\text{,}} \end{aligned} $$
    $$ \begin{aligned} {\text{相对芽长}}= & {\text{不同}}{{\rm{CdCl}}_2}{\text{浓度处理的芽长}}/{\text{对应材料}}\\ & {\text{在对照条件下的芽长}}{\text{。}} \end{aligned} $$

    P=0.01为差异显著标准,将供试材料的性状值进行单因素方差分析及Duncan’s多重比较,筛选出性状值与‘华粳籼74’差异显著的SSSLs,以这些SSSLs进行耐Cd性QTL鉴定。在本研究中,分别对衡量耐Cd性的相对根长与相对芽长进行QTL鉴定。对有重叠片段的SSSLs通过代换作图[24]的方法确定QTL的最小区间。QTL的命名参考McCouch等[25]的命名原则。参考Eshed等[26]的方法计算QTL的加性效应及表型贡献率:

    $$ {\text{加性效应}}= ({\rm{SSSL}}{\text{表型值}}-{\text{‘华粳籼}}74{\text{’表型值}})/2{\text{,}} $$
    $$ \begin{aligned} {\text{加性效应表型贡献率}}= & {\text{加性效应}}/{\text{‘华粳籼}}74{\text{’}}\\ & {\text{表型值}}\times 100{\text{%}}{\text{。}} \end{aligned} $$

    数据用Excel软件处理,方差分析用SPSS 21.0软件进行单因素方差分析(One-way ANOVA),多重比较采用Duncan’ s字母标记法,QTL在染色体上的分布图用Mapchart2.2软件绘制。

    对‘华粳籼74’、‘新黄占’、‘中花11’、‘台中65’、‘粤晶丝苗2号’、‘象牙香占’6个栽培稻品种的种子进行了5个CdCl2浓度的处理。分析发芽后第7 天发芽率、根长、芽长、根芽比4个性状指标。其中在500 μmol·L−1浓度下,水稻种子几乎不发芽(图1)。在0、30、50和100 μmol·L−1 4个浓度下,6个栽培稻品种的种子发芽率为91%~95%,虽然在P=0.05水平,50和100 μmol·L−1浓度下的发芽率与0 μmol·L−1下的发芽率有显著差异,但30、50和100 μmol·L−1 3个浓度下发芽率没有显著差异(图2)。6个栽培稻品种的根芽伸长生长明显受到CdCl2的抑制。随着CdCl2浓度升高,根长和芽长均显著变短;在不同CdCl2浓度处理下,各品种种子根长较芽长更短,表明种子根的生长受到更大程度的抑制。在对照条件下,6个品种的根芽比接近1,CdCl2处理下的根芽比均小于0.5,比对照显著变小(图2)。总体来看,CdCl2胁迫处理条件下,供试水稻品种种子根、芽的伸长生长均明显受到抑制,相同处理浓度下CdCl2对根的抑制程度大于对芽的抑制程度。

    图  1  部分栽培稻品种种子萌发后第7天的根芽生长状况
    Figure  1.  Root and shoot growth of some cultivated rice varieties on the 7th day after germination
    图  2  栽培稻品种在CdCl2各处理浓度下的发芽结果
    相同性状不同柱子上的小写字母表示不同处理浓度间差异显著(P<0.05,Duncan’ s法)
    Figure  2.  Germination results of cultivated rice varieties at different CdCl2 concentrations
    Different lowercase letters on the columns of the same trait indicate significant differences (P<0.05,Duncan’ s test)

    此外,不同品种的根芽生长对Cd胁迫的反应表现出差异(图3)。首先,正常发芽条件下,发芽第7天供试品种种子根长与芽长有显著差异。‘台中65’和‘新黄占’的根长最长,‘中花11’的根长最短;‘象牙香占’的芽长最长,‘华粳籼74’的芽长最短。其次,在Cd胁迫条件下,在不同CdCl2处理浓度下6个品种种子的根长均比对照短,且品种间差异显著,随着处理浓度升高,根长越来越短(图3A);不同品种间及不同CdCl2处理浓度间芽长的差异较小(图3B)。这说明根长能更好地反映栽培稻品种间耐Cd性差异。就相对长度而言,各处理浓度下各品种的相对芽长均大于相对根长(图4)。

    图  3  栽培稻品种在不同CdCl2处理浓度下的根长与芽长
    相同CdCl2浓度不同柱子上的小写字母表示不同品种间差异显著(P<0.05,Duncan’ s法)
    Figure  3.  Root and shoot length of cultivated rice varieties at different CdCl2concentrations
    Different lowercase letters on the columns of the same CdCl2 concentration indicate significant differences (P<0.05,Duncan’ s test)
    图  4  栽培稻品种在不同CdCl2处理浓度下的相对根长与相对芽长
    Figure  4.  Relative root and shoot length of cultivorted rice varieties at different CdCl2 concentrations

    以上分析结果表明,6个供试品种芽期耐Cd性存在显著差异,籼稻品种(‘华粳籼74’、‘新黄占’、‘粤晶丝苗2号’、‘象牙香占’)较粳稻品种(‘中花11’、‘台中65’)更耐Cd胁迫。就耐Cd性的分析而言,本研究CdCl2处理浓度为50、100 μmol·L−1时,相对根长和相对芽长能够较好反映水稻品种间的耐Cd性差异。因此,在本研究SSSLs耐Cd处理筛选及QTL鉴定时,CdCl2处理浓度采用50和100 μmol·L−1

    对37个SSSLs材料和受体亲本‘华粳籼74’做了多个批次的发芽试验。P=0.01水平的方差分析结果表明,在CdCl2胁迫下,供试材料种子发芽第7天的根长、相对根长、芽长及相对芽长等存在显著差异(数据尚未发表)。以根长与芽长为性状指标时,在P=0.01水平,CdCl2浓度为50和100 μmol·L−1时,供试SSSLs的平均根长分布范围分别为2.48~4.93 cm及1.77~3.03 cm,分别有14个和4个SSSLs的根长显著长于‘华粳籼74’(图5A);供试SSSLs的平均芽长分布范围分别为2.76~3.88 cm及2.58~3.52 cm,50 μmol·L−1处理浓度下有2个SSSLs的芽长显著长于‘华粳籼74’(图5B)。由于本研究中各基因型材料在对照条件下发芽第7天的根长与芽长存在显著差异,因此以各材料的相对根长与相对芽长为指标进行耐Cd SSSLs筛选与QTL鉴定。

    图  5  不同SSSLs在不同CdCl2处理浓度下根长和芽长的差异
    “*”表示供试材料的相关性状值与‘华粳籼74’在P=0.01水平差异显著(单因素方差分析)
    Figure  5.  Differences of root and shoot length in SSSLs at different CdCl2 concentrations
    “*” represents significant difference of relative character between experimental material and ‘Huajingxian 74’ at P=0.01 level (One-way ANOVA)

    P=0.01水平,以相对根长为性状指标时,CdCl2浓度为50 μmol·L−1时筛选出7个相对根长显著长于‘华粳籼74’的SSSLs,分别为A1、A12、A124、A14、A18、A36、A9;CdCl2浓度为100 μmol·L−1时筛选出6个相对根长显著长于‘华粳籼74’的SSSLs,分别为A16、A14、A124、A18、A36、A9(图6A)。以相对芽长为性状指标时,CdCl2浓度为50 μmol·L−1时筛选出5个相对芽长显著长于‘华粳籼74’的SSSLs,分别为A9、A14、A18、A19、A36;CdCl2浓度为100 μmol·L−1时筛选出4个相对芽长显著长于‘华粳籼74’的SSSLs,分别为A9、A14、A18、A19(图6B)。

    图  6  不同SSSLs在不同CdCl2处理浓度下相对根长和相对芽长的差异
    “*”表示供试材料的相关性状值与‘华粳籼74’在P=0.01水平差异显著(单因素方差分析)
    Figure  6.  Differences of relative root and shoot length in SSSLs at different CdCl2 concentrations
    “*” represents significant difference of relative character between experimental material and ‘Huajingxian 74’ at P=0.01 level (One-way ANOVA)

    P=0.01水平、2个Cd处理浓度下,A9、A14、A18、A36及A124相对根长均显著长于‘华粳籼74’,表明其耐Cd性强且稳定。根据SSSLs QTL鉴定的原理,认为以上这些SSSLs的代换片段上携带有来自展颖野生稻的耐Cd QTLs(表1图7)。此外,根据各SSSLs代换片段的染色体分布及重叠关系,A9、A12、A14及A36的代换片段均在1号染色体上,片段重叠区间是RM490-RM572,因此,这4个SSSLs携带相同的1个相对根长QTL qRRL1-1。A18、A16、A1及A124分别在第2、3、3及6号染色体上携带QTLs qRRL2-1qRRL3-1qRRL3-2qRRL6-1。其中qRRL1-1qRRL2-1qRRL6-1在2个CdCl2胁迫浓度均能鉴定到,而qRRL3-1只在100 μmol·L−1浓度出现,qRRL3-2只在50 μmol·L−1浓度出现,说明qRRL1-1qRRL2-1qRRL6-1是相对稳定的QTLs。从各QTL的加性效应来看,在50 μmol·L−1 CdCl2浓度条件下,各QTL的加性效应分布范围为0.19~0.60,表型贡献率为31.18%~100.59%。qRRL1-1的平均加性效应为0.33,表型贡献率为55.92%,为遗传效应最大的QTL。在100 μmol·L−1 CdCl2浓度条件下,各QTL的加性效应及表型贡献率均小于50 μmol·L−1 CdCl2,其中qRRL1-1的平均加性效应为0.25,表型贡献率为50.84%,依然是遗传效应最大的QTL。

    表  1  相对根长及相对芽长QTLs及其遗传效应1)
    Table  1.  Identified QTLs and genetic effects for relative root and shoot length
    性状
    Character
    SSSLs QTL 染色体
    Chromosome
    位置
    Position
    加性效应
    Additive effect
    表型贡献率/%
    Phenotypic contribution rate
    50 μmol·L−1
    CdCl2
    100 μmol·L−1
    CdCl2
    50 μmol·L−1
    CdCl2
    100 μmol·L−1
    CdCl2
    相对根长
    Relative root length
    A36 qRRL1-1 1 PSM012-RM572 0.35 0.25 59.08 50.91
    A14 qRRL1-1 1 RM490-RM572 0.20 0.09 32.86 18.99
    A9 qRRL1-1 1 RM490-RM572 0.60 0.41 100.59 82.63
    A12 qRRL1-1 1 RM490-RM449 0.19 31.18
    A18 qRRL2-1 2 PSM375-end 0.33 0.21 54.71 42.53
    A16 qRRL3-1 3 end-RM489 0.10 20.71
    A1 qRRL3-2 3 RM3280-PSM379 0.22 36.64
    A124 qRRL6-1 6 PSM388-RM454 0.27 0.12 45.80 24.14
    相对芽长
    Relative shoot length
    A19 qRSL1-1 1 end-PSM024 0.08 0.08 8.40 7.98
    A36 qRSL1-2 1 PSM012-RM572 0.07 7.43
    A14 qRSL1-2 1 RM490-RM572 0.14 0.10 15.02 10.27
    A9 qRSL1-2 1 RM490-RM572 0.18 0.14 18.95 14.70
    A18 qRSL2-1 2 PSM375-end 0.12 0.14 12.76 14.29
     1) “—”表示未检测到QTL
     1) “—” represents no QTL detected
    下载: 导出CSV 
    | 显示表格
    图  7  耐Cd QTLs染色体分布
    Figure  7.  Chromosome distribution of identified QTLs for Cd tolerance

    P=0.01水平、CdCl2浓度为50和100 μmol·L−1时,分别筛选出5个(A9、A14、A18、A19、A36)和4个(A9、A14、A18、A19)SSSLs的相对芽长显著长于‘华粳籼74’,本研究认为这些SSSLs携带相对芽长的QTLs,具体见表1图7。A19在1号染色体短臂端end-PSM024区间携带QTL qRSL1-1;A36、A14及A9的代换片段在1号染色体上有重叠区间RM490-RM572,因此这3个SSSLs在重叠区间有1个共同的QTL,为qRSL1-2;A18在2号染色体长臂端PSM375-end区间携带QTL qRSL2-1。对各QTL遗传效应分析表明,3个QTLs加性效应均较小,分布范围为0.08~0.18,表型贡献率为7.43%~18.95%。其中A9携带的qRSL1-2在2个胁迫处理条件下均具有最大的加性效应和表型贡献率,这与其在相对根长中的QTL表现一致。

    土壤Cd污染严重影响水稻的正常生长,而大米又是我国居民Cd摄入的主要途径,约占Cd摄入总量的56%[27],Cd的摄入对人体健康破坏特别大[28],所以水稻耐Cd研究以及培育高耐Cd水稻品种十分关键。目前关于水稻种子萌发及根芽生长过程对Cd胁迫响应的研究报道不多,孟桂元等[3]研究表明Cd胁迫对水稻种子的发芽率、发芽指数影响不显著,对种子活力指数及根芽生长具有显著影响;Cd胁迫对根的抑制作用明显大于对芽的抑制。Cd对水稻生长的影响存在浓度效应和时间效应,对根系的抑制程度大于对苗的抑制程度[29]。本研究以相对根长和相对芽长为指标分析不同基因型栽培稻品种芽期耐Cd性,结果表明,6个供试品种的相对根长在2个CdCl2处理浓度下耐Cd性顺序相同,即:‘台中65’<‘中花11’<‘新黄占’<‘象牙香占’<‘华粳籼74’<‘粤晶丝苗2号’;供试品种相对芽长在2个Cd处理浓度下耐Cd性的变化存在差别。陈毓瑾等[30]对30个常规稻品种在发芽期进行2 mg·L−1 Cd胁迫处理,以发芽率、发芽指数、幼苗根长和幼苗芽长等指标进行耐Cd性研究及低Cd积累种质的筛选,结果表明Cd胁迫对水稻种子的根长具有明显的抑制效应,对种子发芽率、发芽指数、幼苗芽长等指标无显著影响,水稻根长可以作为评价水稻种质耐Cd性的参考指标,水稻品种间根长指数有显著差异,‘IR24’是耐Cd性最强的品种。同时,孙亚莉等[4]以50个水稻品种(系)为材料,研究了不同Cd浓度胁迫对种子发芽率、发芽指数、活力指数、胚芽长、胚根长、胚芽鲜质量与胚芽干质量等性状的影响,表明0.5 mmol·L−1 Cd胁迫浓度对各水稻品种种子的发芽率和发芽指数影响不显著,不同Cd胁迫浓度对水稻种子胚根的抑制作用明显大于胚芽,50个供试品种(系)分为Cd胁迫敏感型、中间型和耐受型等。在水稻芽期耐Cd性指标分析及选择上,本研究结果与陈毓瑾等[30]及孙亚莉等[4]的结果较为一致,说明以相对根长为指标筛选耐Cd种质是可靠的。

    近年来,水稻耐Cd QTL的鉴定与定位研究取得一定进展,主要是苗期耐Cd QTL定位[15-18]及籽粒低Cd积累含量QTL/基因的定位与克隆[6-7, 14, 19-21]等研究,但未见芽期耐Cd QTL定位的报道。在水稻幼苗期耐Cd QTL定位研究中,林辉锋等[15]以‘Lemont’和‘Dular’杂交建立的RIL群体,对水培条件下水稻幼苗耐Cd胁迫的QTL进行了初步定位,利用根长和株高作为抗性指标分别检测到QTLs qRAP-1aqSAP-1b,均位于1号染色体RM243-RM578区间(在染色体上的物理区间:7 971 722~8 411 145 bp),经与本研究1号染色体定位QTL qRRL1-1qRSL1-2的标记区间RM490-RM572 (6 677 153~9 866 595 bp)进行比对,发现RM243-RM578包含在标记区间RM490-RM572内,因此,本研究鉴定的相对根长QTL qRRL1-1与林辉锋等[15]定位的qRAP-1a很可能是同一个QTL,相对芽长QTL qRSL1-2与林辉锋等[15]定位的qSAP-1b很可能是同一个QTL。该区间与李炜星等[18]利用籼稻品种‘昌恢121’与粳稻品种‘越光’构建的RIL群体在幼苗期以根长作为抗性指标所定位到的QTL的位置(1号染色体RM8111处)非常接近,因此,认为在1号染色体RM490-RM572附近应该存在控制水稻耐Cd性的QTL。此外,陈志德等[17]利用‘韭菜青’בIR26’构建的RIL群体在幼苗耐Cd胁迫QTL定位中,在2号染色体长臂端标记RM6312-RM3860 (物理区间:35 390 710~35 431 667 bp) 之间定位了一个控制相对苗高的QTL qRSH-2,该区间包含在本研究鉴定的相对芽长QTL qRSL2-1的区间PSM375 -end(物理区间:33 175 495 bp~35 680 037 bp)内,表明水稻2号染色体该区间存在与水稻地上部耐Cd相关的QTL。综合来看,本研究鉴定到的其余5个QTLs,即qRRL2-1qRRL3-1qRRL3-2qRRL6-1qRSL1-1,所在染色体区间与前人已定位的水稻苗期或芽期耐Cd QTL不存在重叠区域,表明这5个QTLs可能为新的QTLs,且各QTL来自展颖野生稻的等位基因产生了增效作用,增强了SSSL的耐Cd性。水稻不同生育期耐Cd性及其籽粒Cd积累特性极其复杂,目前研究者们对其遗传及生理机制的研究尚在进行。对本文鉴定的QTLs进一步进行精细定位与克隆将有助于揭示展颖野生稻SSSLs芽期耐Cd性的机理;此外,对携带芽期耐Cd QTL的SSSLs进一步开展苗期耐Cd性以及籽粒Cd积累的研究也有助于探索QTL的多效性,为开展水稻耐Cd性的分子育种奠定基础。

  • [1]

    WANG J, LIU M, ZHAO L, et al. Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting[J]. Xenotransplantation, 2019, 26(3): e12484. doi: 10.1111/xen.2019.26.issue-3

    [2]

    YAN S, TU Z, LIU Z, et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 173(4): 989-1002. doi: 10.1016/j.cell.2018.03.005

    [3]

    HAI T, GUO W, YAO J, et al. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis[J]. Hum Genet, 2017, 136(11/12): 1463-1475. doi: 10.1007/s00439-017-1851-2

    [4]

    HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. doi: 10.1016/j.cell.2014.05.010

    [5]

    NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949. doi: 10.1016/j.cell.2014.02.001

    [6]

    DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. doi: 10.1126/science.1258096

    [7]

    RAN F A, HSU P D, LIN C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. doi: 10.1016/j.cell.2013.08.021

    [8]

    QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. doi: 10.1016/j.cell.2013.02.022

    [9] 吴添文, 齐传翔, 李训碧, 等. 基因组编辑猪的研究现状及展望[J]. 农业生物技术学报, 2017, 25(5): 781-787.
    [10]

    ZHANG H X, ZHANG Y, YIN H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9[J]. Mol Ther, 2019, 27(4): 735-746. doi: 10.1016/j.ymthe.2019.01.014

    [11]

    TOWNSEND J A, WRIGHT D A, WINFREY R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245): 442-445. doi: 10.1038/nature07845

    [12]

    LOMBARDO A, GENOVESE P, BEAUSEJOUR C M, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery[J]. Nat Biotechnol, 2007, 25(11): 1298-1306. doi: 10.1038/nbt1353

    [13]

    DURAI S, MANI M, KANDAVELOU K, et al. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells[J]. Nucleic Acids Res, 2005, 33(18): 5978-5990. doi: 10.1093/nar/gki912

    [14]

    CHU C, YANG Z, YANG J, et al. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases[J]. BMC Biotechnol, 2019, 19: 7. doi: 10.1186/s12896-018-0494-2

    [15]

    GUILINGER J P, PATTANAYAK V, REYON D, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nat Methods, 2014, 11(4): 429-435. doi: 10.1038/nmeth.2845

    [16]

    CERMAK T, DOYLE E L, CHRISTIAN M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Res, 2011, 39(12): e82. doi: 10.1093/nar/gkr218

    [17]

    LI T, HUANG S, ZHAO X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes[J]. Nucleic Acids Res, 2011, 39(14): 6315-6325. doi: 10.1093/nar/gkr188

    [18]

    HIRANO S, NISHIMASU H, ISHITANI R, et al. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9[J]. Mol Cell, 2016, 61(6): 886-894. doi: 10.1016/j.molcel.2016.02.018

    [19]

    HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. doi: 10.1038/nature26155

    [20]

    XU S, CAO S, ZOU B, et al. An alternative novel tool for DNA editing without target sequence limitation: The structure-guided nuclease[J]. Genome Biol, 2016, 17(1): 186. doi: 10.1186/s13059-016-1038-5

    [21]

    SWARTS D C, VAN DER OOST J, JINEK M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a[J]. Mol Cell, 2017, 66(2): 221-233. doi: 10.1016/j.molcel.2017.03.016

    [22]

    KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017, 8: 14500. doi: 10.1038/ncomms14500

    [23]

    RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186-191. doi: 10.1038/nature14299

    [24]

    HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842. doi: 10.1126/science.aav4294

    [25]

    CRUZ-GARCIA A, LOPEZ-SAAVEDRA A, HUERTAS P. BRCA1 accelerates CtIP-mediated DNA-end resection[J]. Cell Rep, 2014, 9(2): 451-459. doi: 10.1016/j.celrep.2014.08.076

    [26]

    HEYER W D, EHMSEN K T, LIU J. Regulation of homologous recombination in eukaryotes[J]. Annu Rev Genet, 2010, 44: 113-139. doi: 10.1146/annurev-genet-051710-150955

    [27]

    CHEN Y, ZHENG Y, KANG Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Hum Mol Genet, 2015, 24(13): 3764-3774. doi: 10.1093/hmg/ddv120

    [28]

    YANG H, WU Z. Genome editing of pigs for agriculture and biomedicine[J]. Front Genet, 2018, 9: 360. doi: 10.3389/fgene.2018.00360

    [29]

    PIERZCHALA M, PAREEK C S, URBANSKI P, et al. Study of the differential transcription in liver of growth hormone receptor (GHR), insulin-like growth factors (IGF1, IGF2) and insulin-like growth factor receptor (IGF1R) genes at different postnatal developmental ages in pig breeds[J]. Mol Biol Rep, 2012, 39(3): 3055-3066. doi: 10.1007/s11033-011-1068-8

    [30]

    JEON J T, CARLBORG O, TORNSTEN A, et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus[J]. Nat Genet, 1999, 21(2): 157-158. doi: 10.1038/5938

    [31]

    XIANG G, REN J, HAI T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell Mol Life Sci, 2018, 75(24): 4619-4628. doi: 10.1007/s00018-018-2917-6

    [32]

    LIU X, LIU H, WANG M, et al. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J]. Transgenic Res, 2019, 28(1): 141-150. doi: 10.1007/s11248-018-0107-9

    [33]

    QIAN L, TANG M, YANG J, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Sci Rep, 2015, 5: 14435. doi: 10.1038/srep14435

    [34]

    WANG K, OUYANG H, XIE Z, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep, 2015, 5: 16623. doi: 10.1038/srep16623

    [35]

    ZHENG Q, LIN J, HUANG J, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proc Natl Acad Sci USA, 2017, 114(45): E9474-E9482. doi: 10.1073/pnas.1707853114

    [36]

    SAEKI K, MATSUMOTO K, KINOSHITA M, et al. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs[J]. Proc Natl Acad Sci USA, 2004, 101(17): 6361-6366. doi: 10.1073/pnas.0308111101

    [37]

    JIANG W, OKEN H, FIUZAT M, et al. Plasma omega-3 polyunsaturated fatty acids and survival in patients with chronic heart failure and major depressive disorder[J]. J Cardiovasc Transl Res, 2012, 5(1): 92-99. doi: 10.1007/s12265-011-9325-8

    [38]

    KANG J X. The omega-6/omega-3 fatty acid ratio in chronic diseases: Animal models and molecular aspects[J]. World Rev Nutr Diet, 2011, 102: 22-29. doi: 10.1159/000327787

    [39]

    LAI L, KANG J X, LI R, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids[J]. Nat Biotechnol, 2006, 24(4): 435-436. doi: 10.1038/nbt1198

    [40]

    ZHANG P, ZHANG Y, DOU H, et al. Handmade cloned transgenic piglets expressing the nematode fat-1 gene[J]. Cell Reprogram, 2012, 14(3): 258-266. doi: 10.1089/cell.2011.0073

    [41]

    LI M, OUYANG H, YUAN H, et al. Site-specific fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs[J]. G3-Genes Genom Genet, 2018, 8(5): 1747-1754.

    [42]

    TANG F, YANG X, LIU D, et al. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids[J/OL]. Transgenic Res, 2019. http://doi.org/10.1007/s11248-019-00127-4

    [43]

    ZHANG L, ZHOU Y, WU W, et al. Skeletal muscle-specific overexpression of PGC-1α induces fiber-type conversion through enhanced mitochondrial respiration and fatty acid oxidation in mice and pigs[J]. Int J Biol Sci, 2017, 13(9): 1152-1162. doi: 10.7150/ijbs.20132

    [44]

    YING F, ZHANG L, BU G, et al. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle[J]. Biochem Biophys Res Commun, 2016, 480(4): 669-674. doi: 10.1016/j.bbrc.2016.10.113

    [45]

    ZHANG X, LI Z, YANG H, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact[J]. Elife, 2018, 7: e34286. doi: 10.7554/eLife.34286

    [46]

    GOLOVAN S P, MEIDINGER R G, AJAKAIYE A, et al. Pigs expressing salivary phytase produce low-phosphorus manure[J]. Nat Biotechnol, 2001, 19(8): 741-745. doi: 10.1038/90788

    [47]

    LIN Y S, YANG C C, HSU C C, et al. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes[J]. Transgenic Res, 2015, 24(1): 61-71. doi: 10.1007/s11248-014-9817-9

    [48]

    HUANG M, LI Z, HUANG X, et al. Co-expression of two fibrolytic enzyme genes in CHO cells and transgenic mice[J]. Transgenic Res, 2013, 22(4): 779-790. doi: 10.1007/s11248-012-9681-4

    [49]

    ZHANG M, CAI G, ZHENG E, et al. Transgenic pigs expressing beta-xylanase in the parotid gland improve nutrient utilization[J]. Transgenic Res, 2019, 28(2): 189-198. doi: 10.1007/s11248-019-00110-z

    [50]

    HU S, QIAO J, FU Q, et al. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection[J]. Elife, 2015, 4: e6951.

    [51]

    XIE Z, PANG D, YUAN H, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14(12): e1007193. doi: 10.1371/journal.ppat.1007193

    [52]

    YAN Q, YANG H, YANG D, et al. Production of transgenic pigs over-expressing the antiviral gene Mx1[J]. Cell Regen (Lond), 2014, 3(1): 11.

    [53] 江戈龙, 高文超, 刘德武, 等. 母源抗体对感染PCV2仔猪体内病毒变化和免疫反应的影响[J]. 中国兽医学报, 2017, 37(3): 398-403.
    [54]

    NIU P, SHABIR N, KHATUN A, et al. Effect of polymorphisms in the GBP1, Mx1 and CD163 genes on host responses to PRRSV infection in pigs[J]. Vet Microbiol, 2016, 182: 187-195. doi: 10.1016/j.vetmic.2015.11.010

    [55]

    ZHU L, SONG H, ZHANG X, et al. Inhibition of porcine reproductive and respiratory syndrome virus infection by recombinant adenovirus- and/or exosome-delivered the artificial microRNAs targeting sialoadhesin and CD163 receptors[J]. Virol J, 2014, 11: 225. doi: 10.1186/s12985-014-0225-9

    [56]

    WHITWORTH K M, ROWLAND R R, EWEN C L, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20-22. doi: 10.1038/nbt.3434

    [57]

    PRATHER R S, ROWLAND R R, EWEN C, et al. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2013, 87(17): 9538-9546. doi: 10.1128/JVI.00177-13

    [58]

    WHITWORTH K M, LEE K, BENNE J A, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biol Reprod, 2014, 91(3): 78.

    [59]

    BURKARD C, LILLICO S G, REID E, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2): e1006206. doi: 10.1371/journal.ppat.1006206

    [60]

    BURKARD C, OPRIESSNIG T, MILEHAM A J, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92(16): e00415-18.

    [61]

    CHEN J, WANG H, BAI J, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15(2): 481-492. doi: 10.7150/ijbs.25862

    [62]

    YANG H, ZHANG J, ZHANG X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Res, 2018, 151: 63-70. doi: 10.1016/j.antiviral.2018.01.004

    [63]

    WELLS K D, BARDOT R, WHITWORTH K M, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J]. J Virol, 2017, 91(2): e01521-16.

    [64]

    KARALYAN Z, ZAKARYAN H, ARAKELOVA E, et al. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus[J]. Vet World, 2016, 9(12): 1413-1419. doi: 10.14202/vetworld.

    [65]

    LILLICO S G, PROUDFOOT C, KING T J, et al. Mammalian interspecies substitution of immune modulatory alleles by genome editing[J]. Sci Rep, 2016, 6: 21645. doi: 10.1038/srep21645

    [66]

    PAN D, LIU T, LEI T, et al. Progress in multiple genetically modified minipigs for xenotransplantation in China[J]. Xenotransplantation, 2019, 26(1): e12492.

    [67]

    WANG Y, LEI T, WEI L, et al. Xenotransplantation in China: Present status[J]. Xenotransplantation, 2019, 26(1): e12490.

    [68] 高孟雨, 杨光, 包骥. 利用CRISPR/Cas9技术繁育基因修饰猪在医学领域的研究进展[J]. 生物医学工程学杂志, 2018, 35(4): 637-642.
    [69] 黄耀强, 李国玲, 杨化强, 等. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646.
    [70]

    BUTLER J R, WANG Z Y, MARTENS G R, et al. Modified glycan models of pig-to-human xenotransplantation do not enhance the human-anti-pig T cell response[J]. Transpl Immunol, 2016, 35: 47-51. doi: 10.1016/j.trim.2016.02.001

    [71]

    ESTRADA J L, MARTENS G, LI P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202. doi: 10.1111/xen.2015.22.issue-3

    [72] 杨化强, 赖良学. 基因修饰猪作为人类疾病模型的研究进展[J]. 科技导报, 2011, 29(30): 57-62. doi: 10.3981/j.issn.1000-7857.2011.30.008
    [73] 曾芳, 李紫聪, 董锐, 等. 转基因猪技术及其在农业上的应用[J]. 畜牧兽医学报, 2016, 47(2): 218-224.
    [74] 廖莎, 李国玲, 吴珍芳, 等. 转基因动植物生物反应器研究进展及应用现状[J]. 广东农业科学, 2018, 45(11): 126-136.
    [75]

    LEE M H, LIN Y S, TU C F, et al. Recombinant human factor IX produced from transgenic porcine milk[J]. Biomed Res Int, 2014, 2014: 315375.

    [76]

    LU D, LIU S, SHANG S, et al. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk[J]. PLoS One, 2015, 10(5): e123551.

    [77]

    MA J, LI Q, LI Y, et al. Expression of recombinant human alpha-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets[J]. Gene, 2016, 584(1): 7-16. doi: 10.1016/j.gene.2016.02.024

    [78]

    PARK J K, LEE Y K, LEE P, et al. Recombinant human erythropoietin produced in milk of transgenic pigs[J]. J Biotechnol, 2006, 122(3): 362-371. doi: 10.1016/j.jbiotec.2005.11.021

    [79]

    TONG J, WEI H, LIU X, et al. Production of recombinant human lysozyme in the milk of transgenic pigs[J]. Transgenic Res, 2011, 20(2): 417-419. doi: 10.1007/s11248-010-9409-2

    [80]

    GORDON K, LEE E, VITALE J A, et al. Production of human tissue plasminogen activator in transgenic mouse milk[J]. Biotechnology, 1992, 24: 425-428.

    [81]

    BLECK G T, WHITE B R, MILLER D J, et al. Production of bovine alpha-lactalbumin in the milk of transgenic pigs[J]. J Anim Sci, 1998, 76(12): 3072-3078. doi: 10.2527/1998.76123072x

    [82]

    FANALI G, DI MASI A, TREZZA V, et al. Human serum albumin: From bench to bedside[J]. Mol Aspects Med, 2012, 33(3): 209-290. doi: 10.1016/j.mam.2011.12.002

    [83]

    PENG J, WANG Y, JIANG J, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep, 2015, 5: 16705. doi: 10.1038/srep16705

    [84]

    LI L, MENG H, ZOU Q, et al. Establishment of gene-edited pigs expressing human blood-coagulation factor VII and albumin for bioartificial liver use[J]. J Gastroenterol Hepatol, 2019.

    [85]

    ZENG F, LI Z, ZHU Q, et al. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors[J]. Sci Rep, 2017, 7: 41270. doi: 10.1038/srep41270

    [86]

    HAI T, TENG F, GUO R, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res, 2014, 24(3): 372-375. doi: 10.1038/cr.2014.11

    [87]

    ZHOU X, XIN J, FAN N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci, 2015, 72(6): 1175-1184. doi: 10.1007/s00018-014-1744-7

    [88]

    YANG D, YANG H, LI W, et al. Generation of PPAR gamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Res, 2011, 21(6): 979-982. doi: 10.1038/cr.2011.70

    [89]

    CARLSON D F, FAHRENKRUG S C, HACKETT P B. Targeting DNA with fingers and TALENs[J]. Mol Ther Nucleic Acids, 2012, 1: e3.

    [90]

    WANG Y, DU Y, SHEN B, et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA[J]. Sci Rep, 2015, 5: 8256. doi: 10.1038/srep08256

    [91]

    HUANG L, HUA Z, XIAO H, et al. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels[J]. Oncotarget, 2017, 8(23): 37751-37760.

    [92]

    HOLM I E, ALSTRUP A K, LUO Y. Genetically modified pig models for neurodegenerative disorders[J]. J Pathol, 2016, 238(2): 267-287. doi: 10.1002/path.4654

    [93]

    YANG H, WANG G, SUN H, et al. Species-dependent neuropathology in transgenic SOD1 pigs[J]. Cell Res, 2014, 24(4): 464-481. doi: 10.1038/cr.2014.25

    [94]

    WANG G, YANG H, YAN S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain[J]. Mol Neurodegener, 2015, 10: 42. doi: 10.1186/s13024-015-0036-5

    [95]

    UCHIHARA Y, KATAOKA H, YOSHINO H, et al. Parkin mutation may be associated with serious akinesia in a patient with Parkinson's disease[J]. J Neurol Sci, 2017, 379: 119-121. doi: 10.1016/j.jns.2017.05.065

    [96]

    VALENTE E M, SALVI S, IALONGO T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism[J]. Ann Neurol, 2004, 56(3): 336-341. doi: 10.1002/(ISSN)1531-8249

    [97]

    ZHOU X, WANG L, Du Y, et al. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes[J]. Hum Mutat, 2016, 37(1): 110-118. doi: 10.1002/humu.22913

    [98]

    WANG X, CAO C, HUANG J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system[J]. Sci Rep, 2016, 6: 20620. doi: 10.1038/srep20620

    [99]

    UCHIDA M, SHIMATSU Y, ONOE K, et al. Production of transgenic miniature pigs by pronuclear microinjection[J]. Transgenic Res, 2001, 10(6): 577-582. doi: 10.1023/A:1013059917280

    [100]

    YANG D, WANG C E, ZHAO B, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs[J]. Hum Mol Genet, 2010, 19(20): 3983-3994. doi: 10.1093/hmg/ddq313

    [101]

    BAXA M, HRUSKA-PLOCHAN M, JUHAS S, et al. A transgenic minipig model of Huntington’s disease[J]. J Huntingtons Dis, 2013, 2(1): 47-68.

    [102]

    ROGERS C S, HAO Y, ROKHLINA T, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer[J]. J Clin Invest, 2008, 118(4): 1571-1577. doi: 10.1172/JCI34773

    [103]

    ROGERS C S, STOLTZ D A, MEYERHOLZ D K, et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs[J]. Science, 2008, 321(5897): 1837-1841. doi: 10.1126/science.1163600

    [104]

    KLYMIUK N, BLUTKE A, GRAF A, et al. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle[J]. Hum Mol Genet, 2013, 22(21): 4368-4382. doi: 10.1093/hmg/ddt287

    [105]

    YU H H, ZHAO H, QING Y B, et al. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy[J]. Int J Mol Sci, 2016, 17(10).

    [106]

    FLISIKOWSKA T, MERKL C, LANDMANN M, et al. A porcine model of familial adenomatous polyposis[J]. Gastroenterology, 2012, 143(5): 1173-1175. doi: 10.1053/j.gastro.2012.07.110

    [107]

    SIKORSKA A, FLISIKOWSKA T, STACHOWIAK M, et al. Elevated expression of p53 in early colon polyps in a pig model of human familial adenomatous polyposis[J]. J Appl Genet, 2018, 59(4): 485-491. doi: 10.1007/s13353-018-0461-6

    [108]

    ZHANG Y, XUE Y, CAO C, et al. Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis[J]. Blood, 2017, 130(20): 2161-2170. doi: 10.1182/blood-2017-05-783043

    [109]

    KANG J T, RYU J, CHO B, et al. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting[J]. Reprod Domest Anim, 2016, 51(6): 970-978. doi: 10.1111/rda.2016.51.issue-6

    [110]

    GAO X, TAO Y, LAMAS V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents[J]. Nature, 2018, 553(7687): 217-221. doi: 10.1038/nature25164

    [111]

    ROSS J W, FERNANDEZ D C J, ZHAO J, et al. Generation of an inbred miniature pig model of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 501-507. doi: 10.1167/iovs.11-8784

    [112]

    HE J, LI Q, FANG S, et al. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model[J]. Int J Biol Sci, 2015, 11(4): 361-369. doi: 10.7150/ijbs.10858

    [113]

    COOPER D K, SATYANANDA V, EKSER B, et al. Progress in pig-to-non-human primate transplantation models (1998-2013): A comprehensive review of the literature[J]. Xenotransplantation, 2014, 21(5): 397-419. doi: 10.1111/xen.2014.21.issue-5

    [114]

    LAI L, KOLBER-SIMONDS D, PARK K W, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092. doi: 10.1126/science.1068228

    [115]

    DAI Y, VAUGHT T D, BOONE J, et al. Targeted disruption of the α1, 3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3): 251-255. doi: 10.1038/nbt0302-251

    [116]

    HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proc Natl Acad Sci USA, 2011, 108(29): 12013-12017. doi: 10.1073/pnas.1106422108

    [117]

    XIN J, YANG H, FAN N, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. PLoS One, 2013, 8(12): e84250. doi: 10.1371/journal.pone.0084250

    [118]

    KANG J T, KWON D K, PARK A R, et al. Production of α1, 3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology[J]. J Vet Sci, 2016, 17(1): 89-96. doi: 10.4142/jvs.2016.17.1.89

    [119]

    CHUANG C K, CHEN C H, HUANG C L, et al. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors[J]. Anim Biotechnol, 2017, 28(3): 174-181. doi: 10.1080/10495398.2016.1246453

    [120]

    LUTZ A J, LI P, ESTRADA J L, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35. doi: 10.1111/xen.2013.20.issue-1

    [121]

    LI P, ESTRADA J L, BURLAK C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection[J]. Xenotransplantation, 2015, 22(1): 20-31. doi: 10.1111/xen.2015.22.issue-1

    [122]

    DENNER J. Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals?[J]. Retrovirology, 2018, 15(1): 28. doi: 10.1186/s12977-018-0411-8

    [123] 李晓开, 龙科任, 麦苗苗, 等. CRISPR-Cas9技术的原理及其在猪研究中的应用[J]. 生命科学, 2018, 30(6): 690-700.
    [124]

    YANG L, GUELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. doi: 10.1126/science.aad1191

    [125]

    NIU D, WEI H J, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. doi: 10.1126/science.aan4187

  • 期刊类型引用(1)

    1. 赵薇,曹国伟,周子航,王卫振,辛国省,蔡正云,顾亚玲,张娟. 鸡肉品质相关调控基因研究进展. 农业生物技术学报. 2022(02): 370-378 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1976
  • HTML全文浏览量:  94
  • PDF下载量:  2950
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-05-26
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2019-09-09

目录

/

返回文章
返回