Advances in recombinant live vector vaccines for animal viruses
-
摘要:
病毒活载体疫苗作为一种新型疫苗,与传统疫苗相比,具有极大的优势与应用前景,是当今与未来疫苗研制与开发的重要方向之一。目前在人类医学和兽医领域,病毒活载体疫苗均取得了大量的研究成果。本文综述了主要的兽用病毒疫苗载体及重组活载体疫苗的最新研究进展,并分析了其发展趋势,为进一步研制新型重组病毒疫苗提供参考。
Abstract:As a new type of vaccine, virus live vector vaccine has great advantages and application prospects compared with traditional vaccine, and it’s an important direction of current and future vaccine development. At present, in the fields of human medicine and veterinary medicine, virus live vector vaccine has achieved a lot of research achievements. In this paper, the latest research progress of main veterinary virus vaccine vectors and recombinant live vector vaccines were reviewed, and their development trends were analyzed, so as to provide a reference for the further development of new recombinant virus vaccines.
-
Keywords:
- live vector vaccine /
- animal virus /
- veterinary vaccinology /
- recombinant virus vaccines /
- immunity
-
鱼类通过消化系统完成对食物的摄取和营养物质的消化吸收.鱼类的早期发育阶段是消化系统不断发育和完善的时期,随着仔鱼食性的转变,消化系统会发生相应的变化,以满足仔鱼生长发育所必需的营养需求.所以在鱼类的早期发育时期消化系统的发育状况会影响到鱼苗的成活率以及鱼苗的发育情况.因此,很有必要研究鱼类早期发育阶段消化系统的形成和发育过程,以便更合理地去配制饵料,提供仔鱼生长的最适饵料,使鱼苗能更好地生长发育,达到更高的成活率.Mai等[1]研究了对大黄鱼Pseudosciaena crocea仔、稚鱼的消化系统,描述了0~40 d鱼消化道的形态组织学特征.Ostaszewska等[2]观察了尖吻鲟Acipenser oxyrinchus孵化后6~49 d消化道的形态组织变化.Saelee等[3]报道了连鳍胡鲇Clarias nieuhofii孵化后0~46 d消化系统发育的组织学和组织化学特性.区又君等[4]研究了0~31 d卵形鲳鲹Trachinotus ovatus消化器官的发育过程及组织结构特征.
条石鲷Oplegnathus fasciatus在分类学上隶属于鲈形目Perciformes石鲷科Oplegnathidae石鲷属,俗称日本鹦鹉鱼,属近海暖温、喜岩礁性鱼类,分布于中国、日本,我国产于黄海、东海、台湾海峡等地[5-6],该鱼色泽鲜艳、条纹美丽,是一种具有较高经济价值和观赏价值的名贵海产鱼类.国内外有关条石鲷生物学的研究已有不少[7-9],胡玲玲等[10]采用解剖和光镜技术对养殖条石鲷消化道的形态学和组织学进行了详细的观察和研究,并探讨了其消化道的组织学和解剖学特征与其杂食性的适应.本文对条石鲷仔、稚、幼鱼消化系统的组织学进行研究,以期为该物种的发育生物学研究和种苗生产提供技术支撑.
1. 材料与方法
1.1 材料
试验用鱼取自南海水产研究所饶平试验基地.育苗水温为24~27 ℃,盐度29~30,pH 7.4~8.2.从0日龄(孵出第1天)仔鱼开始取样观察,直到35日龄,所取鱼苗均健康无病,活动状态正常.样品用波恩氏液进行固定,置于体积分数为70%的乙醇溶液中保存.
1.2 方法
按日龄由小到大取样切片.将已经固定好的标本用自来水冲洗2 h,利用TP1020自动脱水机脱水,透明和浸蜡,用组织包埋机石蜡包埋,Leica轮转式切片机进行纵向和横向连续切片,切片的厚度均为5 μm,贴片,烤片.将制作好的石蜡切片放入Autostainer XL自动染色机内进行H-E染色,中性树胶封片,用卡尔·蔡司光学显微镜进行观察,并摄影.利用目镜测微尺测量各组织长度.
2. 结果
2.1 前期仔鱼(0~3日龄)
初孵仔鱼(0日龄仔鱼),消化系统尚未分化,仅有一段紧贴卵黄囊与腹腔壁的尚未分化的肠管,无黏膜层和黏膜下层、肌肉层的分化.细胞的界线不清晰,由立方形细胞构成,细胞核大,几乎占据整个细胞.口咽腔和肛门尚未形成.此时仔鱼的卵黄囊体积很大,H-E染色呈淡红色,仔鱼以卵黄物质为营养来源,处于内源性营养阶段(图 1a).
图 1 条石鲷仔、稚、幼鱼消化系统组织结构观察(H-E染色)BC:口咽腔;DT:消化道;TB:味蕾;T:舌;PST:雏形胃;ES:食道;GC:杯状细胞;BB:纹状缘;MC:黏膜层;MS:肌肉层;ST:胃;AN:肛门;P:胰脏;L:肝脏;V:肝空泡;VS:静脉窦;SE:浆膜层;IL:胰岛;GAC:鳃弓软骨;BA:鳃弓;FG:假鳃;UJ:上颌;LJ:下颌;AI:前肠;UP:上咽.
a:0 d仔鱼纵切;b:1 d仔鱼纵切;c:2 d仔鱼肝脏原基纵切;d:2 d仔鱼雏形胃纵切;e:2 d仔鱼消化管纵切;f:4 d仔鱼口咽腔纵切;g:5 d仔鱼肝脏纵切;h:8 d仔鱼消化道纵切;i:8 d仔鱼鳃横切;j:10 d咽腔纵切;k:12 d仔鱼整体横切;l:15 d肝脏纵切;m:15 d食道横切;n:15 d胰脏纵切;o:15 d舌纵切;p:15 d胃纵切;q:17 d食道横切;r:17 d口咽腔纵切;s:18 d胃腺纵切;t:18 d肝脏纵切;u:25 d口咽腔纵切;v:35 d鳃纵切;w:35 d食道横切.Figure 1. Histological observation on the digestive system of larvae, juvenile and young Oplegnathus fasciatus(H-E staining)1日龄仔鱼,肠管较初孵仔鱼变粗变长,肠前后部开始出现空腔,细胞体积变大,数目增多,细胞界限不明显,排列较不规则,细胞核仍很大.肛门基本形成,但仍未与外界相通.卵黄囊体积减小(图 1b).
2日龄仔鱼,口裂形成,但还没有开启能力;在口腔形成处出现少量的染成蓝色的软骨细胞,下颌骨开始骨化;食道仍未贯通,细胞排列杂乱,外被浆膜.食道后部的消化道黏膜下层和肌肉层没有形成;在卵黄囊背部出现一染色较深的细胞团,为肝脏原基;胃原基形成空腔,黏膜层出现少量细小的凹陷,腔上皮为单层立方上皮,细胞排列整齐,细胞界限较清晰,细胞核较大,圆形;肠管继续增长,贯穿整个体腔前后,肠腔从两端向中间扩展,肠道未与外界相通,肠黏膜上皮细胞呈柱状,在细胞顶端已形成排列整齐的微绒毛;肾脏开始形成;肝脏原基正在分化形成,肝细胞界限不清晰(图 1c,1d,1e).
2.2 开口期仔鱼(4~8日龄)
4日龄仔鱼,卵黄囊消失,已开口,消化道与外界相通,形成口咽腔(图 1f)、食管、胃、肠和肛门,开始摄食.食道和胃的连接处出现缢痕.胃部开始膨大,肠道增粗,变弯;胃黏膜形成5~6个低褶,黏膜外形成一层结缔组织.肝细胞呈不规则的多边形.
5日龄仔鱼,口咽腔继续扩大;肠道仍无明显的前、中、后肠的分化,肠壁未见肌肉层,肠上皮细胞分裂加快;肝细胞增多,排列较松散(图 1g).
8日龄仔鱼,口咽腔和食道的黏液细胞迅速增多,肌肉层也迅速增厚;出现短的鳃丝,形成1列假鳃;食管形成7个皱襞,肌层增厚;胃的两端均出现紧缢,使胃与食道、肠的分界明显,胃黏膜褶增至7~9个,黏膜下层含有较多的淋巴细胞;肝脏体积增加,肝细胞增多,排列较致密;肾小管细胞增多,体积增大(图 1h,1i).
2.3 后期仔鱼(10~25日龄)
10日龄仔鱼,下颌宽12.5 μm,出现味蕾;咽部高162.5 μm,出现味蕾;肠黏膜层细胞质中出现大量的嗜伊红颗粒和空泡,肝脏体积显著增大,横切宽为172.5 μm,食道表层上皮细胞之间出现大量的杯状细胞.假鳃长度增到120 μm(图 1j).
12~15日龄仔鱼,口咽腔黏膜层增厚,舌上出现大量味蕾,咽部味蕾增多,鳃丝迅速发育,最长达到270 μm,鳃弓上出现很多味蕾;食道肌层增厚,食道长为135 μm;形成胃腺和幽门盲囊,胃黏膜层增厚,胃小凹增多;肠绒毛明显增长和密集;肝胰脏基本发育成形,肝内的空泡增多(图 1k,1l,1m,1n,1o,1p).
17~25日龄,此时期条石鲷仔鱼的支鳍骨开始形成,各鳍开始进入快速发育时期,25日龄为仔鱼到稚鱼的转变期.胃腺增多,胃肌层进一步增厚,胃和肠壁形成不连续的纵行平滑肌肉层(图 1q,1r,1s,1t,1u).
2.4 稚鱼期(25~35日龄)
进入稚鱼阶段,在舌上出现杯状细胞和味蕾,上下颌的表皮层都含有大量的杯状细胞;胃分化为幽门部,盲囊部和贲门部,胃的柱状上皮顶端有不规则的突起;肠肌层厚度约为62.5 μm.消化系统的各部分结构和功能基本发育完善,消化能力明显增强(图 1v,1w).
3. 讨论
3.1 条石鲷消化系统的早期发育阶段划分
条石鲷消化系统的早期发育与其他的鱼类相似,初孵仔鱼消化系统尚未分化,到开口摄食时,为了适应外源性营养方式,消化系统迅速分化而向仔鱼后期发育,具备基本的结构[11].可能是仔鱼对卵黄物质的吸收只需要基本的系统结构[12].根据形态结构观察以及组织切片的观察,把条石鲷消化系统早期发育分成3个阶段.
第1阶段为孵化后0~3日龄,此时期,仔鱼尚未开口,消化道不与外界相通,仔鱼以卵黄物质为营养,处于内源性营养阶段,消化系统开始发育但尚未分化.要提高这一阶段仔鱼的成活率,除了提供适宜的环境条件,还要注意产前雌性亲鱼的卵的质量,加强亲鱼的培育.雌性产卵群体的饵料质量与仔鱼的饵料在影响仔鱼成活率方面起着同等重要的作用[13].
第2阶段,4~18日龄,卵黄囊消耗完,仔鱼开始摄食,进入外源性营养阶段.消化系统初步发育成型,具备基本的结构,消化系统分化形成口咽腔、食管、胃、肠和肛门,形成肝胰脏.具一定的摄食、储存、消化和吸收的功能.该阶段鱼苗要经历从内源性营养到外源性营养的转变.这个阶段也是鱼苗死亡率较高的时期,由于消化系统发育还不完善,因此要提供适合鱼苗口径以及消化系统特点的饵料.
第3阶段,19~35日龄,胃腺和幽门盲囊已经形成,消化系统已具备成鱼的结构,胃腺的完善促进了食物的消化,这一阶段鱼苗的鳍和鳞片也相继发育完成,这都保证了鱼苗能够快速地生长发育.
3.2 嗜伊红颗粒、空泡和杯状细胞在消化吸收过程中的作用
肠道上皮细胞顶端出现的嗜伊红颗粒和空泡,是细胞消化的一种形式[14].由于在仔鱼期,鱼类的消化系统发育尚不完全,所以仔鱼通过这种途径来实现对营养物质的吸收,尽管这种蛋白质的细胞内消化速度很慢,但对仔鱼摄取营养起到了重要的作用.
食道中的杯状细胞能够分泌黏液,一方面可以起到润滑食道的作用,另一方面可以起到胃前消化的作用.在食道上皮层中含有大量的杯状细胞,而胃的上皮层中不含有杯状细胞.
本研究中,条石鲷10日龄仔鱼,在咽部出现高162.5 μm的味蕾,肠黏膜层细胞质中出现大量的嗜伊红颗粒和空泡,表明此阶段仔鱼的消化道上皮细胞已具有胞饮作用和细胞内消化作用.有文献推测,前肠和中肠的空泡为被吸收的脂肪滴,而在后肠的内容物则是通过胞饮作用吸收的蛋白质.在硬骨鱼类的仔鱼期阶段,由于消化酶系统发育尚未完善,胞饮吸收可能成为鱼体消化蛋白质的一条替代途径[15].在12日龄仔鱼的肝中可见有许多空泡,表明条石鲷仔鱼将从食物中吸收的营养物质贮藏于肝脏中.有研究人员通过PAS染色结果表明,这些空泡为储存在肝脏中的糖元[16].10日龄仔鱼,食道表层上皮细胞之间出现大量的杯状细胞,孵化后25 d在舌上可见到杯状细胞和味蕾,上下颌的表皮层都含有大量的杯状细胞,在胃的黏膜层中未发现杯状细胞.杯状细胞分泌黏液可能具有两方面的作用,一是起润滑作用便于食物顺利通过消化道,另一方面则可能起着胃前消化的作用.
3.3 条石鲷消化道胚后发育组织学特征与其功能的关系
条石鲷消化道的形态组织结构及其功能随着鱼体发育不断完善.孵化后2日龄的仔鱼处于内源性营养阶段,此时尚未开口,其消化道仅为一条实心管道,但已足以满足仔鱼的生理需求.这与高露姣等[17]对银鲳Pampus argenteus的研究结果相一致,而与林强等[18]对大海马Hippocampus kuda的研究结果不同,大海马在仔鱼期已具备可以独立摄食、比较完善的摄食和消化器官,仔鱼的摄食方式未经过内源性营养阶段,直接进入内源与外源混合的营养阶段.4~8日龄条石鲷的仔鱼已经开口,肛门和外界相通,消化道各器官已基本分化,随着发育进程,食道黏膜的褶皱数增多、胃容扩张、肠壁膨大等,这与马爱军等[19]对黑鲷Sparus macrocephalus以及陈晓武等[20]对牙鲆Paralichthys olivaceus的研究观察结果大体相似.表明此阶段的仔鱼已经开口向外界摄食,消化道组织结构上应有一定的发育变化才能满足其生存需求.食道黏膜层具有褶皱,可扩大食道的容积,以利于食物顺利通过食道;胃部扩张使仔鱼获得贮存更多食物的空间;幽门盲囊的分化和肠道膨大都有利于食物的充分消化和吸收.
稚鱼期条石鲷消化道已经表现出该种固有的特性,具有较强的消化功能.食道管肌层增厚,黏膜褶皱加深,黏膜上皮中有杯状细胞,这些结构特征使稚鱼能顺利地吞食较大食物并能成功转移到胃部;胃分化为幽门胃,胃体部和贲门胃,有利于鱼将所摄入的坚硬或难以消化食物在酸性环境中泡软消化,幽门部肌肉层增厚有助于通过收缩肌肉挤压磨碎食物,并将其顺利送入至容积较小的肠道;幽门盲囊与肠道分化相似,黏膜褶皱和杯状细胞数量增多能促使稚鱼对食物的消化吸收更为完全.这与吴金英等[21]对斜带石斑鱼Epinephelus coioide和徐晓津等[22]对大黄鱼的研究结果相似.杯状细胞分泌的黏液一般为中性黏液,具有润滑食物、保护肠道的功用,还可与消化酶协同作用帮助消化[23].黏膜上皮是单层柱状细胞,具有明显的纹状缘,能促进蛋白质、脂肪和糖类等消化分解成为可溶性小分子物质而被肠壁吸收[24].
-
[1] COSTA C D, WALKER B, BONAVIA A. Tuberculosis vaccines:State of the art, and novel approaches to vaccine development[J]. Int J Infect Dis, 2015, 32: 5-12.
[2] DRAPER S, HEENEY J. Viruses as vaccine vectors for infectious diseases and cancer[J]. Nat Rev Microbiol, 2010, 8(1): 62-73. doi: 10.1038/nrmicro2240
[3] JORGE S, DELLAGOSTIN O A. The development of veterinary vaccines: A review of traditional methods and modern biotechnology approaches[J]. Biotechnol Res Innov, 2017, 1(1): 6-13. doi: 10.1016/j.biori.2017.10.001
[4] ERTL H C J. Viral vectors as vaccine carriers[J]. Curr Opin Virol, 2016, 21: 1-8. doi: 10.1016/j.coviro.2016.06.001
[5] MACKETT M, SMITH G L, MOSS B. Vaccinia virus: A selectable eukaryotic cloning and expression vector[J]. Proc Natl Acad Sci USA, 1982, 79(23): 7415-7419. doi: 10.1073/pnas.79.23.7415
[6] FAKRI F, BAMOUH Z, GHZAL F, et al. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines[J]. Virology, 2018, 514: 211-215. doi: 10.1016/j.virol.2017.11.015
[7] 郭巍, 曲娟娟, 相文华, 等. 通用山羊痘病毒TK基因缺失转移载体的构建[J]. 吉林农业大学学报, 2008, 30(5): 739-742. [8] 金宁一, 刘毅, 郭志儒, 等. 重组传染性法氏囊病病毒VP2/VP243基因表达及保护性和免疫原性[J]. 中国生物制品学杂志, 2000, 13(1): 2-5. doi: 10.3969/j.issn.1004-5503.2000.01.002 [9] 庞乐君, 刁天喜. 痘病毒疫苗载体[J]. 国际药学研究杂志, 2004, 31(3): 154-157. [10] 孙蕾, 吴艳涛, 张体银, 等. 鸡痘病毒通用高效表达载体的构建及其初步应用[J]. 中国兽医学报, 2004, 24(5): 429-432. doi: 10.3969/j.issn.1005-4545.2004.05.005 [11] OKOLI A, OKEKE M I, TRYLAND M, et al. CRISPR/Cas9: Advancing orthopoxvirus genome editing for vaccine and vector development[J]. Viruses, 2018, 10(1): 50-76. doi: 10.3390/v10010050
[12] 郝晓芳, 张加勇, 徐佳, 等. 重组病毒载体疫苗的研究进展[J]. 黑龙江畜牧兽医, 2016(13): 68-71. [13] 刘毅, 金宁一, 郭志儒, 等. 传染性法氏囊病病毒VP2/VP0基因在重组鸡痘病毒中的表达[J]. 中国兽医学报, 1999, 19(2): 126-128. doi: 10.3969/j.issn.1005-4545.1999.02.008 [14] LEE L F, BACON L D, YOSHIDA S, et al. The efficacy of recombinant fowlpox vaccine protection against marek's disease: Its dependence on chicken line and B haplotype[J]. Avi Dis, 2004, 48(1): 129-137. doi: 10.1637/7083
[15] HEINE H G, FOORD A J, YOUNG P L, et al. Recombinant fowlpox virus vaccines against Australian virulent marek's disease virus: Gene sequence analysis and comparison of vaccine efficacy in specific pathogen free and production chickens[J]. Vir Res, 1997, 50(1): 23-33. doi: 10.1016/S0168-1702(97)00049-X
[16] 姬向波. 传染性喉气管炎(ILTV)重组鸡痘病毒(rFPV-gB-gD-IgG)和DNA(pcDNA-gB)疫苗对鸡免疫效果的研究[D]. 南京: 南京农业大学, 2006. [17] 姬向波, 刘文波, 魏建超, 等. 鸡传染性喉气管炎病毒gB基因重组DNA疫苗的构建与免疫试验[J]. 中国病毒学, 2006, 21(5): 481-484. [18] 管倩. 鸡传染性支气管炎病毒S1基因与鸡IL-18基因在禽痘病毒载体中的共表达[D]. 郑州: 河南农业大学, 2008. [19] TIAN Z C, SUN Y K, WANG Y F, et al. The immunological efficacies of recombinant fowlpox virus expressing the S1 gene of LX4 strain of infectious bronchitis virus in specific-pathogen-free (SPF) chickens[J]. Acta Vet Et Zoo techn Sin, 2006, 37(6): 580-586.
[20] 沈国顺, 金宁一, 秦晓光, 等. 表达PRRSV GP5、GP3和猪IL-18的重组鸡痘病毒的构建及鉴定[J]. 中国生物制品学杂志, 2006, 19(6): 583-585. doi: 10.3969/j.issn.1004-5503.2006.06.010 [21] 许晨旭. 共表达H5亚型AIV HA基因和鸡IL-6基因重组鸡痘病毒的构建及免疫效力评价[D].扬州: 扬州大学, 2014. [22] 王振国, 金宁一, 马鸣啸, 等. 共表达H5亚型AIV HA基因与鸡IL-18基因的重组鸡痘病毒的构建[J]. 中国兽医学报, 2006, 26(4): 390-393. [23] 程坚, 刘秀梵, 彭大新, 等. 表达鸡Ⅱ型干扰素基因的重组鸡痘病毒的构建[J]. 农业生物技术学报, 2002, 10(2): 152-155. doi: 10.3969/j.issn.1674-7968.2002.02.012 [24] 李继东, 才学鹏. O型口蹄疫病毒VP1基因重组山羊痘病毒活载体疫苗的研究[J]. 宁夏大学学报(自然版), 2017, 38(4): 371-376. [25] 文明, 程振涛, 岳筠, 等. 山羊痘病毒P32基因序列分析及其B细胞表位预测[J]. 生物技术, 2007, 17(5): 12-14. doi: 10.3969/j.issn.1004-311X.2007.05.005 [26] 孙一瑞, 张敏敏, 李翠翠, 等. 采用非洲地区广泛应用的绵羊痘弱毒株构建表达小反刍兽疫病毒H蛋白的重组疫苗[J]. 中国预防兽医学报, 2018, 40(3): 226-229. [27] 冯杰, 崔燕, 余四九, 等. 羊痘病毒及其载体研究进展[J]. 贵州畜牧兽医, 2018(1). doi: 10.3969/j.issn.1007-1474.2018.01.023 [28] 范红结, 蔺辉星, 陆承平. 表达猪圆环病毒2型Cap蛋白的重组猪痘病毒载体疫苗及其制备方法: CN201210340309.6[P]. 2012-12-19. [29] 黄冬艳. 表达猪链球菌2型保护性抗原重组猪痘病毒的构建、特性分析及其小鼠免疫评估[D]. 南京: 南京农业大学, 2011. [30] LAN D, SHI X, WANG Y, et al. Construction of a recombinant HVT virus expressing the HA gene of avian influenza virus H5N1 via Rde/ET recombination system[J]. Acta Microbiol Sin, 2009, 49(1): 78-84.
[31] 于之清, 童武, 郑浩, 等. 使用CRISPR/Cas9技术构建新型重组伪狂犬病毒疫苗的初步研究[J]. 中国动物传染病学报, 2017, 25(4): 6-12. [32] 邹忠, 黄坤, 金梅林. 基于CRISPR/Cas9技术构建鸭肠炎病毒载体–禽流感–鸭坦布苏病毒基因工程三价疫苗[C]//中国畜牧兽医学会.中国畜牧兽医学会生物技术学分会暨屮国免疫学会兽医免疫分会第十二次学术研讨会论文集.昆明: 哈尔滨维科生物技术开发公司, 2016: 266. [33] 王林青, 郑兰兰, 李坤, 等. 猪伪狂犬病病毒载体重组疫苗研究进展[J]. 中国预防兽医学报, 2014, 36(2): 160-164. doi: 10.3969/j.issn.1008-0589.2014.02.18 [34] 吴昌义, 林瑞庆, 袁子国. 伪狂犬病毒作为疫苗载体的研究进展[J]. 黑龙江畜牧兽医, 2010(15): 30-32. [35] LEI J L, XIA S L, WANG Y M, et al. Safety and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the E2 protein of classical swine fever virus in pigs[J]. Immunol Lett, 2016, 174: 63-71. doi: 10.1016/j.imlet.2016.04.014
[36] KLINGBEIL K, LANGE E, TEIFKE J P, et al. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus[J]. J Gen Virol, 2014, 95(4): 948-959.
[37] HONG Q, QIAN P, LI X, et al. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: A trivalent vaccine candidate[J]. Biotechnol Lett, 2007, 29(11): 1677-1683. doi: 10.1007/s10529-007-9459-6
[38] 徐高原, 陈焕春, 徐晓娟, 等. 乙型脑炎重组伪狂犬病病毒TK-/gG-/NS1+的安全性及免疫性[J]. 中国兽医学报, 2004, 24(2): 145-147. doi: 10.3969/j.issn.1005-4545.2004.02.014 [39] 邓晓辉. 共表达猪细小病毒VP2和猪圆环病毒2型Cap的重组伪狂犬病毒的构建及其鉴定[D]. 泰安: 山东农业大学, 2012. [40] WEI F, ZHAI Y J, JIN H T, et al. Development and immunogenicity of a recombinant pseudorabies virus expressing Sj26GST and SjFABP from Schistosoma japonicum[J]. Vaccine, 2010, 28(32): 5161-5166. doi: 10.1016/j.vaccine.2010.06.012
[41] NIE H, FANG R, XIONG B Q, et al. Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins[J]. Vet Parasitol, 2011, 181(2/3/4): 215-221.
[42] BAIGENT S J, PETHERBRIDGE L J, SMITH L P, et al. Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek's disease[J]. J Gen Virol, 2006, 87(4): 769-776. doi: 10.1099/vir.0.81498-0
[43] IQBAL M. Progress toward the development of polyvalent vaccination strategies against multiple viral infections in chickens using herpesvirus of turkeys as vector[J]. Bioengineered, 2012, 3(4): 222-226. doi: 10.4161/bioe.20476
[44] GERGEN L, COOK S, LEDESMA B, et al. A double recombinant herpes virus of turkeys for the protection of chickens against Newcastle, infectious laryngotracheitis and Marek’s diseases[J]. Avian Pathol, 2019, 48(1): 45-56. doi: 10.1080/03079457.2018.1546376
[45] 赵冬凤, 高轩, 刘新文, 等. 表达H5N1亚型禽流感HA-NA基因重组火鸡疱疹病毒的构建[J]. 中国动物检疫, 2008, 25(4): 20-22. doi: 10.3969/j.issn.1005-944X.2008.04.012 [46] SHARMA J M, ZHANG Y, JENSEN D, et al. Field trial in commercial broilers with a multivalent in ovo vaccine comprising a mixture of live viral vaccines against Marek's disease, infectious bursal disease, newcastle disease, and fowl pox[J]. Avian Dis, 2002, 46(3): 613-622. doi: 10.1637/0005-2086(2002)046[0613:FTICBW]2.0.CO;2
[47] DARTEIL R, BUBLOT M, LAPLACE E, et al. Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens[J]. Virology, 1995, 211(2): 481-490. doi: 10.1006/viro.1995.1430
[48] LIU Y, LI K, GAO Y, et al. Recombinant Marek’s disease virus as a vector-based vaccine against avian leukosis virus subgroup J in chicken[J]. Viruses, 2016, 8(11): 301-313. doi: 10.3390/v8110301
[49] CRONENBERG A M, VAN GEFFEN C E, DORRESTEIN J, et al. Vaccination of broilers with HVT expressing an Eimeria acervulina antigen improves performance after challenge with Eimeria[J]. Acta Virol, 1999, 43(2/3): 192.
[50] 何诚, 刘杉杉, 褚军, 等. 鹦鹉热衣原体重组HVT活载体疫苗的构建与免疫效力测定[C]// 中国畜牧兽医学会2014年学术年会论文集. 广州: 中国畜牧兽医学会, 2014: 243. [51] Merial. VAXXITEK[R/OL]. (2016–02–12)[2019–04–13]. https://www.merial.us/vaxxitek.aspx.
[52] Ceva. VECTORMUNE.[R/OL]. (2014–04–15)[2019–04–12]. https://www.vectormune.com/.
[53] MSD. INNOVAX.[R/OL]. (2015–06–22)[2019–04–12]. https://www.innovax-vaccines.com/.
[54] PETHERBRIDGE L, XU H, ZHAO Y, et al. Cloning of Gallid herpesvirus 3 (Marek’s disease virus serotype-2) genome as infectious bacterial artificial chromosomes for analysis of viral gene functions[J]. J Virol Meth, 2009, 158(1): 11-17.
[55] ISHIHARA Y, ESAKI M, SAITOH S, et al. Combination of two Marek’s disease virus vectors shows effective vaccination against Marek’s disease, infectious bursal disease, and newcastle disease[J]. Avian Dis, 2016, 60(2): 473. doi: 10.1637/11359-122615-RegR
[56] LIU X, WEI S, LIU Y, et al. Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus[J]. Vaccine, 2013, 31(50): 5953-5959. doi: 10.1016/j.vaccine.2013.10.035
[57] WANG J, GE A, XU M, et al. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens[J]. Virol J, 2015, 12: 126-139. doi: 10.1186/s12985-015-0354-9
[58] ZOU Z, MA J, HUANG K, et al. Live attenuated vaccine based on duck enteritis virus against duck hepatitis a virus types 1 and 3[J]. Front Microbiol, 2016, 7: 1613.
[59] 陈柳, 余斌, 倪征, 等. 表达小鹅瘟病毒VP2蛋白重组鸭瘟病毒的构建及其生物学特性[J]. 中国农业科学, 2016, 49(14): 2813-2821. doi: 10.3864/j.issn.0578-1752.2016.14.015 [60] 陈柳, 余斌, 倪征, 等. 表达鸭坦布苏病毒E蛋白的重组鸭瘟病毒的构建及其生物学特性[J]. 浙江农业学报, 2015, 27(11): 1889-1895. doi: 10.3969/j.issn.1004-1524.2015.11.05 [61] ZOU Z, HUANG K, WEI Y, et al. Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection[J/OL]. Sci Rep, 2017, 7: 1478. [2019-04-15]. https://doi.org/10.1038/s41598-017-01554-1.
[62] PAVLOVA S, VEITS J, METTENLEITER T C, et al. Identification and functional analysis of membrane proteins gD, gE, gI, and pUS9 of Infectious laryngotracheitis virus[J]. Avian Dis, 2013, 57(S2): 416-426.
[63] VEITS J, METTENLEITER T C, FUCHS W. Five unique open reading frames of infectious laryngotracheitis virus are expressed during infection but are dispensable for virus replication in cell culture[J]. J Gen Virol, 2003, 84(6): 1415-1425. doi: 10.1099/vir.0.18926-0
[64] SHAO Y, SUN J, HAN Z, et al. Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge[J]. Vaccine, 2018, 36(52): 7975-7986. doi: 10.1016/j.vaccine.2018.11.008
[65] EWER K J, LAMBE T, ROLLIER C S, et al. Viral vectors as vaccine platforms: From immunogenicity to impact[J]. Curr Opin Immunol, 2016, 41: 47-54. doi: 10.1016/j.coi.2016.05.014
[66] ZHU J, HUANG X, YANG Y. Innate immune response to adenoviral vectors is mediated by both toll-like receptor-dependent and -independent pathways[J]. J Virol, 2007, 81(7): 3170-3180. doi: 10.1128/JVI.02192-06
[67] ALCOCK R, COTTINGHAM M G, ROLLIER C S, et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass[J]. Sci Transl Med, 2010, 2(19): 12-19.
[68] ALI M, LEMOINE N R, RING C J. The use of DNA viruses as vectors for gene therapy[J]. Gen Ther, 1994, 1(6): 367-384.
[69] MORRAL N, O'NEAL W, RICE K, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons[J]. Proc Natl Acad Sci USA, 1999, 96(22): 12816-12821. doi: 10.1073/pnas.96.22.12816
[70] WARIMWE G M, GESHARISHA J, CARR B V, et al. Chimpanzee adenovirus vaccine provides multispecies protection against rift valley fever[J/OL]. Sci Rep, 2016, 6: 20617. [2019-04-16]. https://doi.org/10.1038/srep20617.
[71] PANNIPA C, PAKAMATZ K, PIYALAMPORN H, et al. Cost comparison of rabies pre-exposure vaccination with post-exposure treatment in Thai children[J]. Vaccine, 2006, 24(9): 1478-1482. doi: 10.1016/j.vaccine.2005.03.059
[72] 潘群兴, 王永山, 何孔旺, 等. 传染性法氏囊病病毒株VP2基因在重组腺病毒中的表达[J]. 中国兽医学报, 2010, 30(3): 312-316. [73] 耿合员, 孙元, 韩宗玺, 等. 表达鸡传染性支气管炎病毒S1基因重组腺病毒的构建[J]. 中国预防兽医学报, 2011, 33(3): 173-176. doi: 10.3969/j.issn.1008-0589.2011.03.02 [74] HASSAN A O, AMEN O, SAYEDAHMED E E, et al. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses[J]. PLoS One, 2017, 12(10): e186244.
[75] WANG X, WANG X, JIA Y, et al. Coadministration of recombinant adenovirus expressing GM-CSF with inactivated H5N1 avian influenza vaccine increased the immune responses and protective efficacy against a wild bird source of H5N1 challenge[J]. J Interferon Cytokine Res, 2017, 37(10): 467-473. doi: 10.1089/jir.2017.0043
[76] LIN S C, LIU W C, LIN Y F, et al. Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses[J]. Biotechnol J, 2013, 8(11): 1315-1322. doi: 10.1002/biot.v8.11
[77] MEDINA G N, MONTIEL N, STURZA D, et al. Evaluation in cattle of fiber-modified adenovirus vector-vaccine against foot-and-mouth disease[J]. Clin Vacc Immunol Cvi, 2015, 23(2): 415-426.
[78] SUN Y, TIAN D Y, Su L, et al. Comprehensive evaluation of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever[J]. Vaccine, 2013, 31(3): 528-544.
[79] YUAN S, TIAN D Y, LI S, et al. Comprehensive evaluation of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever[J]. Vaccine, 2013, 31(3): 538-544. doi: 10.1016/j.vaccine.2012.11.013
[80] ROJAS J M, MORENO H, VALCÁRCEL F, et al. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep[J]. PLoS One, 2014, 9(7): e101226. doi: 10.1371/journal.pone.0101226
[81] HOLZER B, TAYLOR G, RAJKO-NENOW P, et al. Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats[J]. Vet Res, 2016, 47(1): 1-6. doi: 10.1186/s13567-015-0288-7
[82] PEETERS B P, LEEUW O S D, KOCH G, et al. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence[J]. J Virol, 1999, 73(6): 5001-5009.
[83] NAKAYA T, CROS J, PARK M S, et al. Recombinant Newcastle disease virus as a vaccine vector[J]. J Virol, 2001, 75(23): 11868-11873. doi: 10.1128/JVI.75.23.11868-11873.2001
[84] ZHAO W, ZHANG Z, ZSAK L, et al. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression[J]. J Gen Virol, 2015, 96(1): 40-45.
[85] STEGLICH C, GRUND C, RAMP K, et al. Chimeric newcastle disease virus protects chickens against avian influenza in the presence of maternally derived NDV immunity[J]. PLoS One, 2013, 8(9): e72530. doi: 10.1371/journal.pone.0072530
[86] KIM S, PALDURAI A, SAMAL S K. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus[J]. Virology, 2017, 503: 31-36. doi: 10.1016/j.virol.2017.01.006
[87] 邹伟斌, 陈丹, 谢少霞, 等. 基因工程活载体疫苗的研究进展[J]. 广东畜牧兽医科技, 2016, 41(4): 1-5. doi: 10.3969/j.issn.1005-8567.2016.04.001 [88] ZHAO W, SPATZ S, ZHANG Z Y, et al. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges[J]. J Virol, 2014, 88(15): 8397-8406. doi: 10.1128/JVI.01321-14
[89] ZHAO R, SUN J, QI T, et al. Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge[J]. Vaccine, 2017, 35(18): 2435-2442. doi: 10.1016/j.vaccine.2017.03.045
[90] 柯勇, 肖贤, 毕波, 等. 表达猪流行性腹泻病毒纤突蛋白的重组水泡性口炎病毒构建和鉴定[J]. 畜牧与兽医, 2019, 51(2): 76-82. [91] 高飞, 曲泽慧, 姜一峰, 等. 重组猪瘟病毒C株E2蛋白的猪繁殖与呼吸综合征病毒的构建及鉴定[J]. 中国动物传染病学报, 2015, 23(5): 1-9. doi: 10.3969/j.issn.1674-6422.2015.05.001 [92] 张挺杰, 刘星, 孙涛, 等. 表达猪圆环病毒2型ORF2基因的重组猪繁殖与呼吸综合征病毒的构建与鉴定[J]. 病毒学报, 2015(1): 65-73. [93] ARMESTO M, EVANS S, CAVANAGH D, et al. A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype[J]. PLoS One, 2011, 6(8): e24352. doi: 10.1371/journal.pone.0024352
[94] YANG X, ZHOU Y, LI J, et al. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge[J]. Arch Virol, 2016, 161(5): 1209-1216. doi: 10.1007/s00705-016-2764-4
[95] ARTURO R S, SARANYA S, TAMARA B, et al. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei[J]. Eur J Immunol, 2010, 41(5): 732-741.
计量
- 文章访问数: 1982
- HTML全文浏览量: 18
- PDF下载量: 5531