• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

施N、P肥对西南桦无性系幼苗生长及叶片N、P含量的影响

刘士玲, 陈琳, 庞圣江, 张培, 杨保国, 韦菊玲, 李朝英, 贾宏炎

刘士玲, 陈琳, 庞圣江, 等. 施N、P肥对西南桦无性系幼苗生长及 叶片N、P含量的影响[J]. 华南农业大学学报, 2020, 41(2): 111-116. DOI: 10.7671/j.issn.1001-411X.201904005
引用本文: 刘士玲, 陈琳, 庞圣江, 等. 施N、P肥对西南桦无性系幼苗生长及 叶片N、P含量的影响[J]. 华南农业大学学报, 2020, 41(2): 111-116. DOI: 10.7671/j.issn.1001-411X.201904005
LIU Shiling, CHEN Lin, PANG Shengjiang, et al. Effects of N and P fertilization on growth and leaf N and P contents of Betula alnoides clone seedlings[J]. Journal of South China Agricultural University, 2020, 41(2): 111-116. DOI: 10.7671/j.issn.1001-411X.201904005
Citation: LIU Shiling, CHEN Lin, PANG Shengjiang, et al. Effects of N and P fertilization on growth and leaf N and P contents of Betula alnoides clone seedlings[J]. Journal of South China Agricultural University, 2020, 41(2): 111-116. DOI: 10.7671/j.issn.1001-411X.201904005

施N、P肥对西南桦无性系幼苗生长及叶片N、P含量的影响

基金项目: 国家重点研发计划(2016YFD0600604-01)
详细信息
    作者简介:

    刘士玲(1987—),女,工程师,硕士,E-mail: liushiling725@163.com

    通讯作者:

    贾宏炎(1968—),男,高级工程师,硕士,E-mail: rlzxjhy@163.com

  • 中图分类号: S723.7

Effects of N and P fertilization on growth and leaf N and P contents of Betula alnoides clone seedlings

  • 摘要:
    目的 

    研究施氮、磷肥对西南桦Betula alnoides无性系生长和叶片养分含量的影响,筛选适宜的施肥配方。

    方法 

    以4个西南桦优良无性系组培苗(A5、FB4、FB4+、BY-1)为研究对象,试验按完全随机区组设计,通过设置每株施N(0、200、400 mg)和施P(0、70、140 mg)共9个组合处理,研究施肥处理间及无性系间幼苗的苗高、地径、生物量、根冠比、分枝数、叶面积和叶片养分含量等差异。

    结果 

    不同施肥处理幼苗的苗高、地径、生物量、分枝数、根冠比和叶面积差异均极显著,且施肥处理和无性系的交互作用对苗高、地径、根冠比和分枝数影响达极显著水平。各无性系均为处理5的幼苗生长表现最优,其苗高、地径、生物量、分枝数和叶面积比其他施肥处理分别提高了2.10%~74.13%、6.67%~91.45%、12.24%~358.33%、2.76%~712.64%和2.46%~456.31%。施肥处理对西南桦无性系幼苗叶片的N、P养分含量的影响均达到极显著水平,而无性系之间及无性系和施肥处理的交互作用对叶片养分含量的影响差异不显著。叶片的N、P含量随着氮磷肥的添加而增加,添加氮磷肥能够显著提髙叶片中该种养分的含量。叶片N、P含量及其比值与生物量均符合抛物线关系,且呈显著的正相关关系(P<0.000 1),处理5的叶片N/P质量比约为15,这可能是影响西南桦生长的N/P限制比例。

    结论 

    施肥显著促进了西南桦无性系幼苗的生长并提高了叶片养分含量,但无性系之间差异不显著。综合幼苗的生长和叶片养分含量指标,处理5(每株施N 200 mg和施P 70 mg)条件下西南桦无性系生长表现最优。

    Abstract:
    Objective 

    To reveal the effects of nitrogen and phosphorus additions on growth and leaf nutrient content of Betula alnoides clone seedlings, and select the optimal fertilization formula.

    Method 

    Four B. alnoides clones (A5, FB4, FB4+, BY-1) were chosen as the materials and a completely randomized experimental design with nine treatments including three N levels (0, 200 and 400 mg per seedling) and three P levels (0, 70 and 140 mg per seedling) was conducted to compare the differences in seedling height, root collar diameter, biomass, ratio of root to shoot, branch number, leaf area and leaf nutrient content of B. alnoides clones in different fertilization treatments.

    Result 

    Seedling height, root collar diameter, biomass, branch number, ratio of root to shoot and leaf area were significantly affected by fertilization treatment, and the effects of clone-fertilization treatment interaction were significantly different in seedling height, root collar diameter, ratio of root to shoot and branch number. Regardless of the clone, the treatment five had superior seedling height, root collar diameter, biomass, branch number and leaf area, being 2.10%−74.13%, 6.67%−91.45%, 12.24%−358.33%, 2.76%−712.64%, 2.46%−456.31% higher than those of other fertilization treatments, respectively. Leaf N and P contents of different fertilization treatments were significantly different, however there was no significant difference in clones and the interaction between clone and fertilization treatments. The contents of N and P in leaves increased with the additions of nitrogen and phosphorus fertilizers, and additions of nitrogen and phosphorus fertilizers could significantly increase the accumulation of these nutrients in leaves. Seedling biomass, leaf N content, leaf P content and N/P mass ratio were in a parabolic relationship, and they showed a significant positive correlation (P<0.000 1). N/P mass ratio of 15 might be the limiting ratio affecting the growth ofB. alnoides.

    Conclusion 

    Fertilization significantly promotes the growth and improves leaf nutrient contents of B. alnoides seedlings, but there is no significant difference among clones. Based on the seedling growth and leaf nutrient content indexes, treatment five (200 mg N and 70 mg P per seedling) exhibits the optimal growth performance for B. alnoides clones.

  • 图  1   西南桦无性系幼苗叶片养分含量与生物量的关系

    Figure  1.   Relationship between leaf nutrient content and biomass of Betula alnoides clone seeding

    表  1   西南桦无性系苗木单株施肥处理

    Table  1   Fertilization treatment for per seedling of Betula alnoides clone

    处理编号
    No. of treatment
    施N量/mg
    N application amount
    施P量/mg
    P application amount
    施K量/mg
    K application amount
    1(CK) 0 0 332
    2 0 70 332
    3 0 140 332
    4 200 0 332
    5 200 70 332
    6 200 140 332
    7 400 0 332
    8 400 70 332
    9 400 140 332
    下载: 导出CSV

    表  2   不同施肥处理下的西南桦无性系苗木生长表现1)

    Table  2   Growth performance of Betula alnoides clone seedlings in different fertilization treatments

    项目
    Item
    编号
    Number
    苗高/cm
    Seedling height
    地径/mm
    Root collar diameter
    生物量/g
    Biomass
    根冠比
    Ratio of root to shoot
    分枝数
    Branch number
    叶面积/cm2
    Leaf area
    处理
    Treatment
    1(CK) 10.01±1.33e 1.17±0.34c 0.24±0.04c 0.39±0.07a 0.87±0.62c 73.59±14.77c
    2 10.80±1.79de 1.26±0.34c 0.27±0.06c 0.37±0.15a 1.66±0.89bc 84.54±21.02c
    3 11.07±1.77d 1.39±0.33c 0.31±0.08c 0.38±0.07a 2.11±1.54b 98.36±23.34c
    4 16.61±0.50abc 2.07±0.27ab 0.86±0.17b 0.27±0.10b 6.78±0.84a 364.97±85.89ab
    5 17.43±0.49a 2.24±0.29a 1.10±0.19a 0.18±0.02d 7.07±0.27a 409.39±94.00a
    6 17.07±1.36ab 2.10±0.32ab 0.97±0.26ab 0.21±0.04bcd 6.88±1.45a 399.57±87.38a
    7 15.92±0.76c 1.90±0.33b 0.89±0.12b 0.26±0.08bc 6.58±0.93a 317.79±81.23b
    8 16.36±0.80bc 2.00±0.27ab 0.98±0.18ab 0.20±0.02cd 6.51±1.15a 354.25±107.68ab
    9 16.15±0.74bc 2.03±0.24ab 0.89±0.18b 0.23±0.05bcd 6.17±0.75a 347.78±123.73ab
    无性系
    Clone
    A5 14.77±3.19a 1.59±0.42c 0.69±0.36a 0.28±0.10a 5.42±3.07a 257.15±148.43a
    FB4 14.80±2.32a 1.85±0.33ab 0.69±0.30a 0.29±0.10a 5.12±1.93a 279.42±151.72a
    FB4+ 14.81±2.89a 1.81±0.47bc 0.81±0.44a 0.24±0.09a 4.90±2.60a 305.94±186.45a
    BY-1 14.02±3.82a 2.01±0.59a 0.70±0.34a 0.30±0.13a 4.39±2.87a 246.47±134.38a
    变异来源
    Source of variance
    处理 Treatment 114.19** 39.06** 58.06** 17.99** 126.47** 33.05**
    无性系 Clone 0.42 4.00** 0.72 1.76 0.65 0.53
    处理×无性系
    Treatment×Clone
    2.27** 2.46** 0.70 2.09** 2.60** 0.31
     1)同一项目同列数据后的不同小写字母表示差异显著(P<0.05,Duncan′s法);“**”表示差异达0.01显著水平(双因素方差分析)
     1) Different lowercase letters in the same column of the same item indicated significant differences(P<0.05,Duncan′s test);“**” indicated significances at 0.01 level(Two-way ANOVA)
    下载: 导出CSV

    表  3   不同施肥处理对西南桦无性系苗木叶片养分含量的影响1)

    Table  3   Effects of different fertilization treatments on leaf nutrient contents of Betula alnoides clone seedings

    项目 Item 编号 Number w/(g·kg−1)
    N P
    处理 Treatment 1(CK) 21.42±2.66c 1.49±0.39c
    2 22.08±3.07c 1.76±0.41bc
    3 22.47±3.08c 1.94±0.49ab
    4 30.06±3.05b 1.84±0.25ab
    5 30.33±2.58b 2.00±0.23a
    6 28.69±2.57b 2.17±0.34a
    7 30.55±3.00ab 1.81±0.23ab
    8 32.63±1.35a 1.86±0.28ab
    9 30.08±2.08b 1.98±0.2ab
    无性系 Clone A5 28.20±4.65a 1.86±1.12a
    FB4 28.15±4.68a 1.86±0.90a
    FB4+ 28.64±5.06a 1.94±1.07a
    BY-1 27.07±5.06a 1.81±1.70a
    变异来源 Source of variance 处理 Treatment 32.96** 3.44**
    无性系 Clone 1.82 0.62
    处理×无性系 Treatment×Clone 1.05 0.63
     1)同一项目同列数据后的不同小写字母表示差异显著(P<0.05,Duncan′s法);“**”表示差异达0.01显著水平(双因素方差分析)
     1) Different lowercase letters in the same column of the same item indicated significant differences(P<0.05,Duncan′s test); “**” indicated significances at 0.01 level(Two-way ANOVA)
    下载: 导出CSV
  • [1]

    VITOUSEK P M. Nutrient cycling and nutrient use efficiency[J]. Am Nat, 1982, 119(4): 553-572. doi: 10.1086/283931

    [2]

    SALIFU K F, JACOBS D F, BIRGE Z K D. Nursery nitrogen loading improves field performance of Bareroot oak seedlings planted on abandoned mine lands[J]. Restor Ecol, 2009, 17(3): 339-349. doi: 10.1111/j.1526-100X.2008.00373.x

    [3]

    LI H, LI M C, LUO J, et al. N fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species[J]. J Exp Bot, 2012, 63(17): 6173-6185. doi: 10.1093/jxb/ers271

    [4]

    BALSTER N J, MARSHALL J D. Eight-year responses of light interception, effective leaf area index, and stemwood production in fertilized stands of interior Douglas-fir (Pseudotsuga menziesii var. glauca)[J]. Can J Forest Res, 2000, 30(5): 733-743. doi: 10.1139/x00-002

    [5]

    SAMUELSON L, STOKES T, COOKSEY T, et al. Production efficiency of loblolly pine and sweetgum in response to four years of intensive management[J]. Tree Physiol, 2001, 21(6): 369-376. doi: 10.1093/treephys/21.6.369

    [6]

    GOTORE T, MUREPA R, GAPARE W J. Effects of nitrogen, phosphorus and potassium on the early growth of Pinus patula and Eucalyptus grandis[J]. J Trop Forest Sci, 2014, 26(1): 22-31.

    [7] 王力朋, 晏紫伊, 李吉跃, 等. 指数施肥对楸树无性系生物量分配和根系形态的影响[J]. 生态学报, 2012, 32(23): 7452-7462.
    [8] 韦如萍, 胡德活, 陈金慧, 等. 低磷胁迫下杉木无性系根系形态及养分利用响应研究[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 1-8.
    [9] 白尚斌. 西南桦、思茅松和北美红杉幼苗对N、P养分的适应机制[D]. 哈尔滨: 东北林业大学, 2002.
    [10] 邹慧. 西南桦幼苗菌根真菌接种与施磷效应研究[D]. 北京: 中国林业科学研究院, 2018.
    [11] 陈琳, 曾杰, 徐大平, 等. 氮素营养对西南桦幼苗生长及叶片养分状况的影响[J]. 林业科学, 2010, 46(5): 35-40. doi: 10.11707/j.1001-7488.20100506
    [12]

    CHEN L, JIA H Y, ZENG J, et al. Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply[J]. Ann Forest Res, 2016, 59(2): 199-207.

    [13] 刘士玲, 陈琳, 杨保国, 等. 氮磷施肥对西南桦无性系生物量分配和根系形态的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 23-29.
    [14]

    CHEN L, WANG C S, DELL B, et al. Growth and nutrient dynamics of Betula alnoides seedlings under exponential fertilization[J]. J Forest Res, 2018, 29(1): 111-119. doi: 10.1007/s11676-017-0427-2

    [15] 艾娟娟. 不同林业废弃物基质及施肥配方对西南桦和柚木的生长效应[D]. 北京: 中国林业科学研究院, 2018.
    [16]

    CHEN L, ZENG J, JIA H Y, et al. Growth and nutrient uptake dynamics of Mytilaria laosensis seedlings under exponential and conventional fertilizations[J]. Soil Sci Plant Nutr, 2012, 58(5): 618-626. doi: 10.1080/00380768.2012.708879

    [17]

    BOYCE R L, LARSON J R, SANFORD R L. Phosphorus and nitrogen limitations to photosynthesis in Rocky Mountain bristlecone pine (Pinus aristata) in Colorado[J]. Tree Physiol, 2006, 26(11): 1477-1486. doi: 10.1093/treephys/26.11.1477

    [18]

    TURNBULL T L, WARREN C R, ADAMS M A. Novel mannose-sequestration technique reveals variation in subcellular orthophosphate pools do not explain the effects of phosphorus nutrition on photosynthesis in Eucalyptus globulus seedlings[J]. New Phytol, 2007, 176(4): 849-861. doi: 10.1111/j.1469-8137.2007.02229.x

    [19]

    GUO J, WU Y Q, WANG B, et al. The effects of fertilization on the growth and physiological characteristics of Ginkgo biloba L.[J]. Forests, 2016, 7(12): 293-306. doi: 10.3390/f7120293

    [20]

    NEWTON P F, AMPONSAH I G. Systematic review of short-term growth responses of semi-mature black spruce and jack pine stands to nitrogen-based fertilization treatments[J]. Forest Ecol Manag, 2006, 237(1/2/3): 1-14.

    [21]

    WHITE P J, BROWN P H. Plant nutrition for sustainable development and global health[J]. Ann Bot, 2010, 105(7): 1073-1080. doi: 10.1093/aob/mcq085

    [22]

    ROTHSTEIN D E. Effect of fertilization on growth and mortality of jack pine growing on poor, sandy soils in Michigan, USA: Implications for sustainable management[J]. Forests, 2018, 9(9): 549-561. doi: 10.3390/f9090549

    [23]

    SANTIAGO L S, WRIGHT S J, HARMS K E, et al. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition[J]. J Ecol, 2012, 100(2): 309-316. doi: 10.1111/j.1365-2745.2011.01904.x

    [24]

    BARRONGAFFORD G A, WILL R E, BURKES E C, et al. Nutrient concentrations and contents, and their relation to stem growth, of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities[J]. Forest Sci, 2003, 49(2): 291-300.

    [25] 彭少麟. 热带亚热带恢复生态学研究与实践[M]. 北京: 科学出版社, 2003: 177-180.
    [26] 严正兵, 金南瑛, 韩廷申, 等. 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响[J]. 植物生态学报, 2013, 37(6): 551-557.
    [27] 靳冰洁. 氮、磷施肥对刨花楠及马尾松幼苗生长的影响[D]. 福州: 福建师范大学, 2015.
    [28] 刘洋, 张健, 陈亚梅, 等. 氮磷添加对巨桉幼苗生物量分配和C︰N︰P化学计量特征的影响[J]. 植物生态学报, 2013, 37(10): 933-941.
    [29] 宋平, 张蕊, 张一, 等. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11): 1136-1144. doi: 10.17521/cjpe.2016.0109
    [30] 赵燕, 董雯怡, 张志毅, 等. 施肥对毛白杨杂种无性系幼苗生长和光合的影响[J]. 林业科学, 2010, 46(4): 70-77. doi: 10.11707/j.1001-7488.20100411
图(1)  /  表(3)
计量
  • 文章访问数:  2227
  • HTML全文浏览量:  11
  • PDF下载量:  2218
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-01
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-03-09

目录

    /

    返回文章
    返回